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Abstract—Diffusion models have become the primary choice
in audio generation. However, their slow generation speed neces-
sitates acceleration techniques. While current audio generation
methods primarily target U-Net-based models, the Diffusion
Transformer (DiT) is emerging as the trend in audio generation.
As DiT costs a large amount of computational resources, we
propose AudioCache: a training-free caching strategy that, for
the first time to our best knowledge, accelerates DiT-based audio
generation models by reusing the attention and feedforward
layers of DiT during sampling. We define a reasonable statistic
to characterize the degree of internal structure variation, leading
to the proposal of a self-adaptive caching strategy. We achieve
a 2.35x acceleration with both objective and subjective metrics
remaining practically consistent. Furthermore, our method is
extendable to different models and input modalities. Based on
appropriate indicators and corresponding rules, this method
provides a plug-and-play and training-free solution for diffusion
models built on attention architectures.

Index Terms—audio generation, acceleration, training-free
method, caching, DiT

I. INTRODUCTION

Diffusion models [1] have achieved significant success in
audio generation [2]–[6] due to their high generation qual-
ity and diversity. Most diffusion models are based on U-
Net [7], however, recent research has found that DiT [8]
outperforms U-Net when used as the backbone of diffusion
models. Leveraging the inherently scalable framework of
transformers [9], DiT can support larger models and global
receptive fields, thereby achieving superior generation quality
[8]. Consequently, we believe that DiT will be the primary
framework for future audio generation.

Diffusion models usually require hundreds of iterations to
generate high-quality audio, which makes their slow sampling
speed a limiting factor for real-time deployment in the field
of audio generation. Recently, many studies have focused
on accelerating diffusion models through techniques such as
quantization [10], [11], pruning [12], [13], distillation [14]–
[16], and optimized sampling solvers [17]–[19]. Some of these
methods, such as AudioLCM [20] and ConsistencyTTA [21],
have also been applied in the field of audio generation. How-
ever, these approaches often require significant training costs
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(a) Text prompt ’A baby is crying loudly’.

(b) Text prompt ’An acoustic guitar played in fingerstyle.’

Fig. 1. Comparison of Mel spectrograms before and after a 2.35x acceleration:
the left column shows the unaccelerated version, and the right column shows
the accelerated version.

to distill a new model, and they are primarily implemented on
the U-Net architecture. Recently, caching methods [22], [23]
have found that certain feature calculation layers do not change
significantly between adjacent time steps during sampling, so
these features can be stored for future reuse.

In response to the aforementioned issues, we propose an
acceleration method named AudioCache for DiT-based audio
generation for the first time, utilizing a training-free caching
method. We reuse the attention and feedforward layers of DiT
during sampling. Furthermore, we discovered that different
blocks in DiT and different layers within the same block
exhibit varying levels of activity during sampling, necessitating
a self-adaptive caching interval. We conducted our experiments
on the first open-source DiT-based audio generation model,
Stable Audio Open [24], achieving a 2.35x acceleration in au-
dio generation while maintaining virtually the same production
quality. Fig. 1 shows the Mel spectrograms before and after
acceleration.

The main contributions of our paper can be summarized as
follows:

• We propose AudioCache, which applies a training-free
caching method to accelerate audio generation models
for the first time.

• We explore the variation patterns of different layers
within DiT during the sampling process and define rea-
sonable indicators to guide our self-adaptive caching
strategy.

• We demonstrate that our method is decoupled from model



architecture and input modality, making it extendable to
other audio generation tasks.

II. RELATED WORK

Diffusion Models. Diffusion models stand out among many
generative models due to their ability to generate high-quality
and diverse outputs. In the reverse process of a diffusion
model, the noisy data is fed into a noise estimation network,
which aims to progressively remove the noise and recover
the original data. Existing diffusion models primarily utilize
the U-Net architecture. However, DiT is emerging as a new
trend. DiT is based on stacked transformers layers, which can
effectively expand the model’s capacity to enhance generation
quality.
Acceleration of Diffusion Models. Due to the time-
consuming sampling process of diffusion models, acceleration
techniques are crucial. Recently, there has been a surge in re-
search on diffusion model acceleration, including quantization,
pruning, distillation, optimized sampling solvers, caching, and
dynamic model inference [25]. For distillation, the Consistency
Model (CM) [14] maps all points on the ODE trajectory to
the origin through the consistency formula to achieve one-
step generation, while the Latent Consistency Model (LCM)
[15] extends CM to the latent space and achieves multi-step
generation. For optimized sampling solvers, DPM-Solver++
[19] addresses the instability problem of high-order solvers,
significantly reducing the sampling steps while ensuring sam-
ple quality. For caching, some time-consuming feature calcu-
lation layers show relatively small changes between adjacent
time steps during the sampling process, making them suitable
caching targets to improve sampling speed. Existing caching
methods [22], [23], [26]–[29] are primarily applied in the field
of image generation.

III. METHOD

A. Baseline

We use Stable Audio Open as our baseline to implement
our acceleration method, which is an open-source DiT-based
text-to-audio generation model capable of generating high-
quality stereo sound effects and music of controllable duration.
The DiT architecture of Stable Audio Open consists of 24
transformer blocks, each of which comprises a self-attention
layer, a cross-attention layer, and a feedforward layer. Each
layer within the transformer block is modified with layer
normalization and skip residual connections.

B. Caching Strategy

Most caching strategies are training-free acceleration meth-
ods, as they reuse similar features calculated in previous
sampling steps to avoid repetitive computations. These features
do not change significantly between adjacent time steps in the
denoising process.

In the forward propagation of each block in DiT, the main
computational workload is concentrated in the self-attention
layer, cross-attention layer, and feedforward layer, which is
approximately two orders of magnitude larger than tensor

Fig. 2. Caching strategy for DiT audio generation model. The time step t in
the sampling process varies from T to 0. In DiT, Lin denotes pre-processing,
while Lout denotes post-processing. Bt,i represents the i-th transformer
block at time step t, and Lt,i indicates a specific feature computation layer
within Bt,i (which could be a self-attention layer, a cross-attention layer, or
a feedforward layer). N represents the current caching interval, meaning that
the feature computation layers from subsequent time steps t−1 to t−N will
reuse the feature computation layers from time step t instead of recomputing
them.

addition. Therefore, we cache the features computed by these
layers at specific time steps, as shown in Fig. 2. We retain
the residuals, which contain information from the previous
latent z, preventing them from being cached during forward
propagation. This approach avoids losing information from the
previous latent z while also minimizing any speed loss [28].

C. Self-adaptive Caching Strategy

After discussing what to cache, we then address when to
cache. We observe that at different stages of the denoising
process, the activity of different blocks in DiT varies, and
the variation patterns of different layers within a single block
also differ. Therefore, we should define appropriate statistics
to characterize their changing patterns.

Inspired by [26], We define the L1 relative change rate
of a certain layer Lt,i in DiT as shown in Equation (1) to
characterize the variation patterns of that layer at time step t.
lt,i is the input latent to Lt,i and c is the embedding of the
condition.

EL,t,i =
∥Lt,i(lt,i, c)− Lt+1,i(lt+1,i, c)∥1

∥Lt,i(lt,i, c)∥1
(1)

In Fig. 3, we present the mean and variance of the L1
relative change rate for various feature calculation layers under
the influence of different prompts as the sampling time steps
advance. Our observations indicate that the variance in these
layers’ responses to various prompts is minimal. This suggests
that the changing patterns within these layers, as measured by
the L1 relative change rate, exhibit consistency across different
prompts. Since the L1 relative change rate remains decoupled
from the prompt variations, it is well-defined for cache strategy
base on model structure only. Regarding our baseline model,
during the initial phase of the contour generation [32] in
the denoising process, the layers situated in the front blocks



(a) Graphs of self attention layers at different depths.

(b) Graphs of cross attention layers at different depths.

(c) Graphs of feedforward layers at different depths.

Fig. 3. The curve represents the average L1 relative change rate of different
layers in DiT of Stable Audio Open during denoising process, and the light
colored area shows the standard deviation of the L1 relative change rate
corresponding to different prompts. The curve is plotted using 5000 prompts
randomly selected from the AudioCaps [30] and Song Describer [31] datasets.

are more active. As the process transitions into the detail
generation stage [32], the layers in the middle and rear blocks
become more active. In the end of the denoising process, all
layers demonstrate a tendency towards convergence.

Based on the above conclusions, we need to use self-
adaptive caching intervals for different layers at different
time steps. Our self-adaptive caching strategy, as outlined in
Algorithm 1, is described as follows: Since the aforementioned
rule is not affected by prompts, we can calculate the L1 relative
change rate of each layer in advance. As sampling progresses,
when the cumulative L1 relative change rate, as defined in
Equation (2), of a certain layer i from the last caching moment
t1 to the current time step t reaches the set threshold δ,
indicating that the cumulative change of that layer has become
sufficiently large, the features of that layer are recalculated,
and the cache is updated. Otherwise, the cached values are
reused.

Esum,L,t,i =

t∑
τ=t1

∥Lτ,i(lτ,i, c)− Lτ+1,i(lτ+1,i, c)∥1
∥Lτ,i(lτ,i, c)∥1

(2)

IV. EXPERIMENT

A. Experimental Settings

Model and Datasets. We choose Stable Audio Open as our
baseline model, which is the first text-to-audio DiT model.
Stable Audio Open uses a T5 [33] text encoder. For our
test datasets, we use Audiocaps and Song Describer. The
Audiocaps test dataset contains 4,875 captions, while the Song
Describer dataset without singing includes 586 captions. For
all datasets, each audio corresponds to multiple captions, so
we generate an audio for each caption for evaluation purposes.

Algorithm 1: Self-adaptive Caching Strategy
Input: set of layers requiring caching D (self-attn, cross-attn,

ff), current time step t, latent zt, DiT depth M ,
threshold δ, sampling solver Solver, condition c

Output: latent zt−1

lt,1 = Lin(zt)//pre-processing
for i = 1,2,...,M do

for L in D do
if Esum,L,t,i >δ then

calculate Lt,i(lt,i, c)
store Lt,i(lt,i, c) in CacheL,t,i

lt,i+1 = lt,i + Lt,i(lt,i, c) //residual connection
else

retrieve Lt,i(lt,i, c) from CacheL,t,i

lt,i+1 = lt,i + Lt,i(lt,i, c)
DiTt = Lout(lt,M+1) //post-processing,DiTt is model output
zt−1 = Solver(zt, DiTt)
return zt−1

Implementations. For both our baseline model and accel-
erated model, we use DPM++ 3M SDE as the solver to
perform inference over 100 time steps and test the generation
results with various self-adaptive cache thresholds δ. For the
Audiocaps dataset, we generate 47 seconds of 44.1 kHz dual-
channel audio and then trim it to 10 seconds (discarding the
silent parts at the end). For the Song Describer dataset, we
generate 47 seconds of 44.1 kHz dual-channel audio.
Objective Evaluation. For quantitative generation quality
assessment, we continue the three evaluation metrics of Sta-
ble Audio Open: FDopenl3 [34], KLpasst [35], [36] and
CLAPscore [37]. For FDopenl3, all audio is evaluated in a
dual-channel format with a 44.1 kHz sampling rate. For 16kHz
single-channel audio generated by other models, upsampling
to 44.1 kHz is required, and the single channel is duplicated
to simulate dual-channel.
Subjective Evaluation. We use a 5-level Likert scale ranging
from 20 to 100 to implement our Mean Opinion Score(MOS)
questionnaire, which includes evaluations of audio quality
score (MOS-Q) and text fidelity score (MOS-F). 20 users
participate in this study.

B. Main Results

Table I and Table II shows our main experimental results.
We present the results of AudioCache using different self-
adaptive threshold δ. Objective indicators and subjective test
results indicate that δ=0.3 can achieve a good acceleration ratio
while maintaining the original generation quality.

C. Ablation studies

For ablation experiments, our method tests on models with
different DiT architectures, input modalities, samplers, and
sampling steps, demonstrating that our method is decoupled
from the model, input modality, sampler, and sampling steps.
In the following experiments, we default to using the optimal
threshold δ=0.3, which balances generation performance and
acceleration ratio.

Table III shows the results of our method applied to the text-
to-audio and video-to-audio models of Make-An-Audio 3 [38],



which is a flow matching model. Make-An-Audio 3 employs
a different DiT architecture than Stable Audio Open. The text-
to-audio model of Make-An-Audio 3 uses a CLAP [39] text
encoder and DiT architecture, while the video-to-audio model
uses a CAVP video encoder and DiT architecture. In Fig. 4,
we plot the L1 relative change rate in different attention layers
of the two DiT models as a function of sampling steps. It can
be seen that the variation pattern is minimal under inputs of
different prompts or videos, as the variance of the L1 relative
change rate is very small, indicating that this variation pattern
is decoupled from the input. We achieve a 2-3x acceleration
for both models using AudioCache with almost no loss of
generation quality. This proves that our acceleration method is
decoupled from the DiT model architecture and input modality.

Table IV shows the results of AudioCache under different
samplers. Our method maintains the generation quality almost
unchanged even after accelerating by 2-3 times, demonstrating
that our acceleration method is decoupled from the sampler.

Table V shows the results of AudioCache at different
sampling steps. When the number of sampling steps increases,
the threshold can be appropriately increased to improve the
acceleration ratio while ensuring the generation effect, demon-
strating that our acceleration method is decoupled from the
sampling steps.

V. CONCLUSION

In this paper, we apply the training-free caching method
to accelerate audio generation models for the first time. We
define the L1 relative change rate to explore the variation
patterns of different layers in DiT during the inference process,
which guides us in designing a self-adaptive caching strategy.
Our method achieves a 2.35x acceleration while maintaining
practical consistency in both objective and subjective metrics.
Our approach is decoupled from the DiT model architecture,
input modality, sampler, and sampling steps, demonstrating the
plug-and-play nature of our method.

TABLE I
TEXT-TO-AUDIO GENERATION ON AUDIOCAPS TEST DATASET.

COMPARISON OF AUDIOCACHE AND BASELINE MODEL STABLE AUDIO
OPEN IN GENERATING 44.1KHZ DUAL-CHANNEL 10S AUDIO.

Model Speed FD (↓) KL (↓) CLAP (↑) MOS-Q(↑) MOS-F(↑)
Stable Audio Open / 78.24 2.14 0.29 86.50±1.22 90.63±1.08
AudioCache(δ=0.2) x1.78 79.57 2.14 0.28 86.88±1.15 90.50±1.10
AudioCache(δ=0.3) x2.35 80.30 2.15 0.28 87.13±1.27 89.88±1.12
AudioCache(δ=0.4) x2.80 91.47 2.20 0.25 83.07±1.21 87.04±1.18

TABLE II
TEXT-TO-AUDIO GENERATION ON SONG DESCRIBER DATASET.

COMPARISON OF AUDIOCACHE AND BASELINE MODEL STABLE AUDIO
OPEN IN GENERATING 44.1KHZ DUAL-CHANNEL 47S AUDIO.

Model Speed FD (↓) KL (↓) CLAP (↑) MOS-Q(↑) MOS-F(↑)
Stable Audio Open / 96.51 0.55 0.41 86.43±1.35 88.29±1.18
AudioCache(δ=0.2) x1.78 97.44 0.57 0.42 87.14±1.42 88.29±1.35
AudioCache(δ=0.3) x2.35 98.07 0.58 0.41 86.29±1.38 88.00±1.25
AudioCache(δ=0.4) x2.80 103.14 0.65 0.38 82.29±1.24 86.29±1.20

(a) Graph of attention layers of T2A at different depths.

(b) Graph of attention layers of V2A model at different depths.

Fig. 4. The curve represents the average L1 relative change rate of different
layers in DiT of Make-An-Audio 3 during denoising process, and the light
colored area shows the standard deviation of the L1 relative change rate
corresponding to different prompts.

TABLE III
TEXT-TO-AUDIO GENERATION ON AUDIOCAPS TEST DATASET,

VIDEO-TO-AUDIO GENERATION ON VGGSOUND TEST DATASET. FOR
MAKE-AN-AUDIO 3, COMPARISON OF OUR SELF-ADAPTIVE CACHING

METHOD AND BASELINE MODEL IN GENERATING 16KHZ
SINGLE-CHANNEL 10S AUDIO.

Model Method Model Speed FD (↓) KL (↓) CLAP (↑)
Stable Audio Open / T2A / 78.24 2.14 0.29
Stable Audio Open AudioCache(δ=0.3) T2A x2.35 80.30 2.15 0.28

make-an-audio 3 / T2A / 189.28 1.51 0.42
make-an-audio 3 AudioCache(δ=0.1) T2A x2.41 193.21 1.50 0.42
make-an-audio 3 / V2A / 57.15 3.48 /
make-an-audio 3 AudioCache(δ=0.1) V2A x2.50 59.06 3.35 /

TABLE IV
TEXT-TO-AUDIO GENERATION ON AUDIOCAPS TEST DATASET.

COMPARISON OF OUR SELF-ADAPTIVE CACHING METHOD ON DIFFERENT
SAMPLERS IN GENERATING 44.1KHZ DUAL-CHANNEL 10S AUDIO.

Sampler Method Speed FD (↓) KL (↓) CLAP (↑)
DPM ++ 3M SDE Stable Audio Open / 78.24 2.14 0.29
DPM ++ 3M SDE AudioCache(δ=0.3) x2.35 80.30 2.15 0.28

Heun Stable Audio Open / 79.03 2.16 0.30
Heun AudioCache(δ=0.3) x2.39 82.05 2.17 0.30

TABLE V
TEXT-TO-AUDIO GENERATION ON AUDIOCAPS TEST DATASET.

COMPARISON OF OUR SELF-ADAPTIVE CACHING METHOD ON DIFFERENT
STEPS IN GENERATING 44.1KHZ DUAL-CHANNEL 10S AUDIO.

Step Method Speed FD (↓) KL (↓) CLAP (↑)
100 Stable Audio Open / 78.24 2.14 0.29
100 AudioCache(δ=0.3) x2.35 80.30 2.15 0.28
200 Stable Audio Open / 79.89 2.15 0.30
200 AudioCache(δ=0.4) x2.85 82.75 2.14 0.31
500 Stable Audio Open / 80.58 2.14 0.28
500 AudioCache(δ=0.6) x3.24 82.76 2.16 0.27
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