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Abstract—Deep generative models have advanced the synthesis
of high-quality audio signals, shifting the focus from audio fidelity
to user-specific customization. Despite significant progress, cur-
rent models struggle to generate style-consistent audio. Audio
style transfer offers a more intuitive approach for capturing
user intent but faces challenges in the disentanglement and
interpretation of content and style. This paper introduces a novel
framework for content-style disentangled audio style transfer. We
introduce an interpretable, formula-based style distance that ef-
fectively disentangles content and style within the language-audio
feature space. The proposed QwenAudio-Contrastive Language
Audio Pretraining (Qwen-CLAP) content extraction module and
the CLAP-based style disentanglement loss coordinated with the
style reconstruction loss, enable interpretable disentanglement
and stylization. Comprehensive experiments on our new dataset,
BBCreatures, demonstrate superior stylization quality, preserv-
ing fine style details and original content.

Index Terms—audio style transfer, information disentangle-
ment, latent diffusion model (LDM)

I. INTRODUCTION

Deep generative models have markedly improved the syn-
thesis of high-quality audio, shifting their development fo-
cus from mere audio fidelity to user-specific customization
[1]. Models like Text-To-Audio (TTA) and Video-To-Audio
(VTA), which are based on tuning-free diffusion techniques,
show remarkable promise in audio personalization and cus-
tomization [2]–[5]. However, these models often struggle with
producing stylistically consistent outputs, frequently requiring
complex prompt engineering which complicates usability [1].
In this context, audio style transfer becomes not just a useful
tool, but a necessary one for refining the output of generative
models, as it allows for precise stylistic adjustments that
align with user preferences without the need for cumbersome
prompt tuning [6], [7]. It can serve as an effective post-
processing module following the generation of an audio clip
by TTA or VTA models, ensuring the final output meets the
desired stylistic criteria and offering a more seamless and
intuitive experience for users [8].

Given a style reference audio, our goal is to transfer its
style to an arbitrary content reference audio. The generated
stylization audio should have the same style with the style ref-
erence audio, and the same content with the content reference
audio. For example, given the sheep bleating sound as content
reference audio, and the cat meowing sound as style reference
audio, our goal is to generate the same cat meowing sound
following the sheep’s bleating rhythm as shown in Figure 1.
Here we define the sound characteristics of the cat as style
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Fig. 1. Concept illustration of audio style transfer.

and the sound events of the sheep’s bleating as content. 1

To fulfill the task of audio style transfer, valuable efforts
have been devoted. For instance, methods like CycleGAN-VC
[9] and StarGAN-VC [10] have attempted to apply similar
principles to audio, where the transfer process is modeled
as a separate optimization of content loss and style loss.
This approach has achieved impressive results in generating
audio that mimics certain styles while preserving the original
content, thus inspiring numerous successors.

However, diving deeper into the essence of audio style
transfer reveals two fundamental challenges with the existing
approaches: I) Overlooking Disentanglement: Content and
style information in audio are inherently intertwined, yet they
represent distinct aspects of audio signal [11]. When content
and style information are not properly disentangled, the result-
ing transfer can become muddled, with the boundaries between
content and style blurring [7]. Without proper disentanglement,
the stylization process can introduce artifacts or unwanted dis-
tortions, resulting in less-than-ideal transfers where the content
is either overly stylized or the style is inadequately applied [2].
II) Lack of Interpretability: The internal mechanisms of deep
learning models used for audio style transfer are often opaque,
leading to a significant challenge in understanding how the
model distinguishes between “content” and “style” [11]. These
models typically operate as complete black boxes, where it is
difficult to decipher the specific features or representations that
the model associates with each aspect of the audio [12]. This
lack of interpretability hinders the ability to precisely control
the stylization process, as users are unable to understand or
adjust how content and style are being manipulated at different
stages [6].

To address the challenges of audio style transfer, we propose
a novel content and style (C-S) disentanglement framework.
The first step is to identify a backbone generation model
conditioned on sound events, ensuring that the input audio’s
content is preserved. Specifically, we use the T-Foley diffusion

1Listen to more examples in supplementary material.



model [13] for its superior performance in generating audio
that is well-synchronized with temporal events. We then fine-
tune it using our proposed methodology to effectively learn
disentangled style information while preserving the original
content. We then decompose the task of audio style transfer
into two distinct subtasks: I) disentangling content and style,
and II) transferring style. To disentangle content and style,
we leverage text modality, as content is typically easier to
describe with text compared to style. This allows us to bypass
the ambiguity associated with disentangling style by explic-
itly extracting content information while implicitly learn-
ing the complementary style. Specifically, we introduce the
QwenAudio-Contrastive Language Audio Pretraining (Qwen-
CLAP) [14], [15] content extraction module to extract domain-
aligned content information. To effectively transfer style, we
define style information as a style distance in the language-
audio-aligned feature space. We also design specific losses to
comprehensively capture style information and ensure accurate
one-to-one mappings during the fine-tuning process. In partic-
ular, we propose the CLAP-based style disentanglement loss,
supplemented with the style reconstruction loss, to facilitate
precise and consistent style transfer.

Our comprehensive evaluations, including comparisons and
ablation studies on our newly proposed BBCreatures dataset,
demonstrate the effectiveness and superior performance of
our framework. The dataset comprises high-quality audio
clips that exhibit clear stylistic differences, ideal for testing
our model. With the well-disentangled C-S, our framework
achieves very promising stylizations with fine-grained style
details, well-preserved contents, and a deep understanding of
the relationship between C-S.

The main contributions of the paper are as follows:
• To the best of our knowledge, we are the first to propose

an interpretable, formula-based style distance that effec-
tively disentangles content and style within the language-
audio-aligned feature space.

• We introduce a new CLAP-based style disentanglement
loss coordinated with a style reconstruction loss that
facilitates precise style transfer.

• We propose a novel fine-tuned framework based on
information disentanglement for audio style transfer,
which enhances disentanglement interpretability and out-
put quality in audio style transfer.

II. RELATED WORKS

A. Audio Style Transfer Without Disentanglement

Diffusion models have emerged as powerful tools for gen-
erating high-quality audio signals [2], [5], [16]. However,
few of them have taken C-S disentanglement into account,
leading to unrealistic audio transfers due to either excessive
or insufficient stylization [1].

Models like AudioLDM [2] and AUDIT [16] rely on textual
prompts to guide the generation of audio and require users to
provide detailed descriptions of desired styles, which can be
inflexible since style can hardly be expressed clearly with text.

Similarly, AP-Adapter [3] uses text prompts for music editing
tasks but suffers from similar limitations. These models cannot
perform style transfer in a flexible and user-friendly manner.
Other models like [17] and [18] in the music domain adopt
example-based audio style transfer, but do not take explicit
C-S disentanglement into account, limiting their performance
and flexibility since the content will be either overly stylized
or the style will be inadequately applied [12], [19].

B. Audio Style Transfer Using Disentanglement

Disentangling content from style in audio has been explored
in various contexts, each addressing different aspects of the
challenge but often lacking in interpretability.

Music Mixing Style Transfer uses contrastive learning to
separate audio effects from content [6], allowing for style
transfer within music mixing. Zero Shot Audio to Audio
Emotion Transfer With Speaker Disentanglement [8] aims
to transfer emotions between audio clips while maintaining
speaker identity. Despite this, the interpretability of what
constitutes “style” versus “content” in these works remains an
issue. SpeechSplit [12] and AutoVC [19] both are designed
around speaker disentanglement, where SpeechSplit further
divides speech into rhythm, content, pitch, and timbre compo-
nents. AutoPST [11] focuses on rhythm disentanglement, sep-
arating rhythmic patterns from the rest of the speech content.
However, they suffer from a lack of interpretability due to their
complex, often opaque mechanisms. This limitation hinders
users’ ability to understand and control the disentanglement
process effectively.

In summary, existing audio style transfer methods either fail
to achieve proper C-S disentanglement or lack interpretability
in the disentanglement process. To overcome these limitations,
our work seeks to propose a novel framework that addresses
these fundamental challenges, aiming for more interpretable
and higher-quality stylizations.

III. METHODOLOGY

Task formulation. Given the style audio As and the content
audio Ac, our objective is to disentangle their respective style
and content, and then transfer the style of As to the content
of Ac, resulting in the stylized audio Acs. This process aims
to achieve a precise fusion where the content of Ac retains its
integrity while adopting the stylistic information of As.

Method Overview. Figure 2 shows the overview of our
model, which consists of three key components: I) the T-Foley
style transfer module, II) the Qwen-CLAP content extraction
module, and III) the CLAP-based style disentanglement loss
coordinated with the style reconstruction loss.

Section III-A introduces the T-Foley diffusion model, detail-
ing its role in our framework. In Section III-B, we elaborate
on the process of extracting content information using the
QwenAudio Large Language Model (LLM) and the CLAP
encoder. Finally, Section III-C delves into the specifics of
designing disentanglement loss and reconstruction loss to
influence the generation process.
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Fig. 2. The overall architecture of the proposed model. Initially, the content audio Ac and the style audio As are processed by QwenAudio Large Language
Model (LLM) to extract explicit content descriptions, Tc and Ts. Subsequently, Ac is fed into the T-Foley diffusion model to generate the stylized result
Acs. During fine-tuning, T-Foley is guided by the CLAP-based style disentanglement loss LSD together with the style reconstruction loss LSR (see details
in Section III-C2). In this phase, most of the original model’s parameters remain frozen, with only the final convolutional layer of T-Foley being trainable.

A. T-Foley Style Transfer Module

T-Foley is a temporal-event-guided waveform generation
model for foley sound synthesis which achieves superior
performance in synchronization with the temporal events. It
generates audio using two conditions: the sound class tag and
explicit temporal event feature, i.e., the frame-level envelope
features. The training goal of the latent diffusion model
(LDM) ϵθ is to reconstruct the audio prior z according to the
corresponding class embedding and temporal event feature as

LLDM = Ex,ϵ∼N(0,I) ||ϵ− ϵθ (zσ, σ, c, T )||22 , (1)

where σ is the current denoising time step, c is class em-
bedding, and T is temporal event feature. The core objective
of T-Foley is to generate audio that accurately reflects given
temporal events. To achieve this, T-Foley uses the Root Mean
Square (RMS) value of the waveform as a frame-level enve-
lope feature. For the i-th frame, the RMS is computed as:

Ei(x) =

√√√√ 1

W

ih+W∑
t=ih

x2(t), (2)

where x(t) is the audio waveform, W is the window length,
and h is the hop size. The Event-L1 Distance (E-L1) metric is
proposed to evaluate the effectiveness of temporal condition-
ing. It measures how well the generated sound matches the
given temporal event condition by calculating the L1 distance
between the RMS features of the target and generated samples:

E-L1 =
1

k

k∑
i=1

||Ei − Êi||, (3)

where Ei is the ground truth event feature for the i-th frame,
and Êi is the predicted event feature.

In our pipeline, the content audio Ac is first processed
through the pre-trained T-Foley model ϵθ. We then apply the
CLAP-based style disentanglement loss along with the style
reconstruction loss to fine-tune the reverse diffusion process
of the model (ϵθ → ϵθ̂), resulting in a stylized output Acs

influenced by the style audio As. During this fine-tuning phase,
we freeze most of the original model’s parameters, enabling
only the final convolutional layer of ϵθ to be trainable. Once
fine-tuning is completed, the model can generate a stylized
version of any input content audio, capturing the stylistic
features of As while preserving the original content.

Due to the limited set of sound classes in the released
pre-trained model, we retrain T-Foley using our BBCreatures
dataset, removing the class condition to expand the range of
application. We maintain the temporal condition to ensure
control over the output in the temporal domain (see Section
IV-A for more details).

In summary, T-Foley provides a robust foundation for our
style transfer pipeline by accurately synthesizing sound event
guided audio, and its flexibility in fine-tuning allows for the
seamless integration of stylistic features while maintaining
content consistency in the generated outputs.

B. Qwen-CLAP Content Extraction Module

Instead of employing complex strategies for disentangling
content and style from audio, we propose an interpretable
and straightforward approach to achieving similar capability.
The content extraction module aims at explicitly extracting
content information and implicitly learning complementary
style information. Compared with the under-determination of
style, content is usually easier to describe with text [20]. This
textual representation serves as an effective and interpretable
proxy for the audio’s content information, allowing us to
bypass the ambiguity often associated with disentangling style.
By transforming the challenge of C-S disentanglement into the
task of precise content extraction, our approach simplifies the
disentanglement process and enhances interpretability.

To achieve this, we leverage QwenAudio, a state-of-the-
art model proven to excel in sound understanding tasks such
as Automatic Audio Captioning (AAC) and Audio Question
Answering (AQA) [14], alongside CLAP, which captures
rich semantic information linking language and audio [15].
Given the style audio As and content audio Ac, we employ
QwenAudio to generate descriptive sentences Ts and Tc that
capture their respective contents, like “There are 3 times of
dog barking”, “The baby cried twice” etc. These sentences
are then encoded using the CLAP text encoder to obtain their
corresponding feature representations Et(Ts) and Et(Tc). At
the same time, we use CLAP audio encoder to extract the
features of style audio As and content audio Ac. By CLAP’s
design, where text and audio features share a common feature
space, these representations can be manipulated algebraically
within this unified feature space. We found that a subtraction
operation of audio features and content text features can effec-
tively disentangle content and style information, eliminating
the content part of the audio features in an interpretable
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Fig. 3. Illustration of different loss functions to transfer the disentangled style information. (a) L1 loss cannot guarantee the stylized results are within the
style domain. (b) Direction loss aligns the disentangled directions but cannot realize accurate mappings. (c) Combining L1 loss and direction can achieve
accurate one-to-one mappings from the content domain to the style domain.

way. Through this method, we achieve an interpretable and
effective means of disentangling style and content, enhancing
the capability for style transfer while maintaining content
fidelity.

In summary, our approach capitalizes on the strengths of
QwenAudio and CLAP to provide an interpretable mechanism
for content extraction and style disentanglement. This not only
simplifies the process but also enhances the quality of style
transfer by ensuring that only the relevant style information is
transferred to the target content.

C. Loss Function and Fine-tuning

1) CLAP-Based Style Disentanglement Loss: After obtain-
ing Tc and Ts—the content descriptions for the content audio
Ac and the style audio As, respectively—the subsequent step
involves learning the disentangled style information of As that
is complementary to its content. To achieve this, the selected
encoder must possess the capability to effectively distinguish
between different audio characteristics, particularly in terms
of stylistic features [21]. Leveraging previous research [2],
[4], [5], which demonstrated CLAP’s proficiency in capturing
not only semantic information but also being sensitive to
stylistic differences, we employ the CLAP text encoder Et

and audio encoder Ea to formulate the disentanglement in a
latent semantic space:

Ds = Ea (As)− Et (Ts) , (4)

where Ds is the style information vector of style audio As in
CLAP feature space. The subtraction of content text features
from the audio features facilitates the disentanglement of style
and content, allowing the CLAP feature space to serve as a
metric for measuring “style distance” between content and
stylized results. This “style distance” can be interpreted as
the disentangled style information. Similarly, we can subtract
the text features of content audio Ac from the audio features
of the stylization result Acs since Ac and Acs should share
the same content information:

Dcs = Ea (Acs)− Et (Tc) , (5)

where Dcs is the disentangled style information vector of Acs.
After obtaining Ds and Dcs, the challenge shifts to properly
aligning the two. A possible solution is optimizing the L1 loss:

LL1
SD = || Dcs −Ds|| . (6)

However, as illustrated in Figure 3(a) and further validated
in Section IV-B3 Table III, minimizing the L1 loss does not
guarantee the stylized result Acs is within the style domain of
the style audio As. Since L1 loss only minimizes the absolute

difference (i.e. Manhattan distance), it can produce stylized
audio that satisfies the Manhattan distance but deviates from
the target style domain in the transfer direction. To address
this issue, we introduce a directional constraint:

Ldir
SD = 1− DcsDs

||Dcs|| ||Ds||
. (7)

This direction loss ensures alignment between the style vectors
of the original style audio and the stylized results, improving
upon the limitations of L1 loss, as illustrated in Figure 3 (b).
Combining both losses yields precise mappings from content
to style domains, as illustrated in Figure 3 (c). Finally, our
style disentanglement loss is defined as a compound of LL1

SD

and Ldir
SD:

LSD = λL1LL1
SD + λdirLdir

SD, (8)

where λL1 and λdir are hyper-parameters set to 10 and 1 in
our experiments. Since our style distance is formulated from
the difference between the content and its stylized output,
we can gain a deeper understanding of the C-S relationship
through learning. This approach enhances the interpretability
of C-S and C-S disentanglement, resulting in more natural and
harmonious style transfers.

2) Style Reconstruction Loss: To fully utilize the informa-
tion provided by the style audio and enhance the stylization
effects, we incorporate a style reconstruction loss at the
beginning of the fine-tuning process. Given the style audio
As, the diffusion model should aim to reconstruct the original
style audio as accurately as possible. We define the style
reconstruction loss as follows:

LSR = || Ass −As ||22, (9)

where Ass represents the stylized result when As also serves
as content audio. We optimize this loss separately before
optimizing the style disentanglement loss LSD.

In conclusion, the combination of the CLAP-based style
disentanglement loss and style reconstruction loss enables
effective and interpretable disentanglement and transfer of
style information, facilitating more accurate and coherent style
transfer. (Refer to Section IV-B3 Table III for validation.)

IV. EXPERIMENTS

A. Experiments Setup

1) Dataset: Existing audio-text datasets often fail to meet
the specific requirement for audio style transfer: each audio
clip should contain only one type of sound to ensure that style
information pertains solely to a single category. To address
this, we constructed a new dataset named BBCreatures from
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BBCSFX2. BBCSFX comprises 33,066 clips across 1,791 cat-
egories. We chose BBCSFX because it contains high-quality
audio clips with minimal noise and predominantly single-
category sounds. For our style transfer method, we selected
five categories—baby, bird, cat, cow, and sheep—that exhibit
clear stylistic differences within each category. All audio clips
were processed to a sampling rate of 22,050 Hz and cut into
4-second segments. After manually removing silent clips, we
prepared 800 clips per category, totaling 4,000 clips. It consists
of 3,500 training samples and 500 testing samples, comparable
in size to the dataset used for T-Foley [22].

2) Implementation Details: We retrained the backbone dif-
fusion model T-Foley on a single Tesla V100 GPU using
the BBCreatures dataset for 500 epochs with a batch size
of 8 samples, omitting the class condition while maintaining
the same experimental settings as T-Foley. Subsequently, we
utilized the pre-trained CLAP encoder from AudioLDM [2]
and fine-tuned the model for each category using one style
audio and 100 content audios from the testing dataset over
20 epochs at a learning rate of 1 × 10−4. To improve the
efficiency of the fine-tuning process, we reduced the number
of denoising steps to 10 during fine-tuning and restored it
to 100 during evaluation. Finally, we selected the fine-tuned
model with the lowest LSD loss for each category.

B. Comparative Experiments

1) Qualitative Results: We conducted comparative exper-
iments with recently published state-of-the-art(SOTA) style
transfer approaches, including AudioLDM and ST-ITO [7],
along with our baseline model T-Foley. Qualitative evaluation
focused on two aspects: content alignment with the content
audio and style similarity with the style audio. As shown in
Figure 4, our model outperformed others in terms of preserv-
ing content and capturing style accurately. Other models either
produced poorly transferred or low-quality audio (ST-ITO) or
generated irrelevant sounds (AudioLDM). While T-Foley was
able to transfer some stylistic features, it did not preserve
details as effectively as our approach. Additional examples
are provided in the supplementary material.

2) Quantitative Results: For objective evaluation, we em-
ployed CLAP score, and Resemblyzer3 score to quantify the
style similarity between the generated audio and the style
audio. Additionally, we used the Frechet Audio Distance

2https://sound-effects.bbcrewind.co.uk/
3https://github.com/resemble-ai/Resemblyzer

(FAD)4, and Kullback-Leibler Divergence (KL)4 to evaluate
the content similarity between the generated audio and the
content audio. Also, the E-L1 loss proposed by T-Foley is used
to prove our fine-tuning process does not corrupt the original
content preservation ability of the baseline model.

TABLE I
RESULTS OF OBJECTIVE EVALUATION.

Model CLAP↑ Resemblyzer↑ E-L1↓ FAD↓ KL↓

AudioLDM 0.68 0.69 0.059 16.8 1.87
ST-ITO 0.48 0.58 0.041 12.5 0.51
T-Foley (Baseline) 0.71 0.70 0.038 17.6 0.96
Ours 0.80 0.76 0.029 16.6 0.87

Our model outperformed all others on the CLAP, Re-
semblyzer, and E-L1 metrics while achieving second-best
performance on the FAD and KL metrics. ST-ITO, which
performed best on FAD and KL, performed worst on the
other metrics. This indicates that our approach offers a more
balanced solution in terms of overall performance including
style similarity and content fidelity using a much smaller
dataset.

It is important to note that FAD, KL, and E-L1 metrics
only calculate the distribution distance between the generated
audio and the content audio but do not consider the dis-
tribution distance concerning the style audio. On the other
hand, CLAP and Resemblyzer only compute the similarity
between the generated audio and the style audio without
considering the content audio. Therefore, these metrics cannot
comprehensively evaluate model performance as a whole,
making subjective evaluation essential.

For subjective evaluation, we obtain the Mean Opinion
Score (MOS) in three main aspects: the realism of the gen-
erated audio (MOS-R), content consistency with the content
audio (MOS-C), and style similarity with the style audio
(MOS-S), as shown in Table II. We collected data from 20
participants who rated 20 examples from five categories. Our
model outperformed the baseline and SOTA models in all as-
pects. Detailed MOS results are provided in the supplementary
material.

3) Ablation Studies: To verify the effectiveness of each loss
term used for fine-tuning, we present the results of ablation
studies in Table III. The full model (LL1

SD+Ldir
SD+LSR) outper-

formed all other configurations on the CLAP and Resemblyzer
scores, indicating superior style transfer capabilities. It also

4https://github.com/haoheliu/audioldm eval

https://sound-effects.bbcrewind.co.uk/
https://github.com/resemble-ai/Resemblyzer
https://github.com/haoheliu/audioldm_eval


TABLE II
RESULTS OF SUBJECTIVE EVALUATION.

Model MOS-R↑ MOS-C↑ MOS-S↑

AudioLDM 2.50 3.36 1.97
ST-ITO 2.64 3.64 1.65
T-Foley(Baseline) 2.55 3.48 2.86
Ours 3.65 4.04 4.05

achieved the lowest FAD, KL, and E-L1 loss, highlighting its
effectiveness in preserving content. The addition of the style
reconstruction loss played a crucial role in improving both
style transfer and content preservation.

To further verify the necessity of C-S disentanglement, we
also experimented without content extraction, using only the
CLAP audio encoder. This modification, which bypasses C-
S disentanglement, resulted in poor performance, even after
adding the style reconstruction loss. This reinforces the im-
portance of disentangling C-S for optimal performance.5

TABLE III
ABLATION STUDIES ON LOSS FUNCTION. * DENOTES OUR FULL MODEL.

Loss CLAP↑ Resemblyzer↑ E-L1↓ FAD↓ KL↓

LL1
SD 0.75 0.69 0.081 19.8 1.72

LL1
SD + Ldir

SD 0.79 0.68 0.080 18.6 1.55
LSR 0.73 0.67 0.041 21.6 4.11
LL1
SD + Ldir

SD + LSR∗ 0.80 0.76 0.029 16.6 0.87

LCLAP -audio 0.73 0.71 0.034 17.5 1.33
LCLAP -audio + LSR 0.76 0.74 0.030 16.9 0.96

V. CONCLUSION

In this work, we addressed the challenge of generating
style-consistent audio by proposing a novel framework for
content-style disentangled audio style transfer using diffusion
models. We introduced an interpretable, formula-based style
distance that effectively disentangles content and style within
the language-audio-aligned feature space. Through the inte-
gration of the Qwen-CLAP content extraction module and the
CLAP-based style disentanglement loss coupled with a style
reconstruction loss, we demonstrated the effectiveness and
interpretability of our approach through extensive experimental
evaluations on the newly developed BBCreatures dataset.
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