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Abstract35

Pathologic myopia (PM) has long been a leading cause of visual impairment36

and blindness. While numerous deep learning-based approaches have improved37

the efficiency and accuracy of recognizing PM, few have thoroughly investi-38

gated clinically significant pathological patterns due to the scarcity of datasets39

with lesion-wise labeling, particularly those comprising ultra-widefield (UWF)40

images that encompass a broader retinal field of view. In this study, we gather a41

large-scale multi-source ultra-widefield imaging myopia dataset, PSMM, labeled42

with posterior staphyloma (PS) and myopic maculopathy (MM). Compared43

with traditional colored fundus photography, UWF images exhibit informative44

characteristics concerning peripheral lesions caused by axial elongation and struc-45

tural deformation in eyes with pathologic myopia. The labels obtained from46

the dataset can substantially assist in the progression diagnosis of pathologic47

myopia and guide prognosis. We introduce an end-to-end lightweight framework48

called RealMNet, which precisely identifies these challenging pathological pat-49

terns underpinned by a well-curated dataset. RealMNet is more adaptable to50

medical devices with only 21 million parameters compared to existing approaches.51

Through extensive experiments on a unified platform using all-around met-52

rics regarding bipartitions and rankings across three experimental protocols,53

we demonstrate the robustness and generalizability of RealMNet, showcasing54

promising merit in clinical applications.55

1 Introduction56

The increasing prevalence of myopia worldwide is a significant public health con-57

cern [1]. It is projected that by 2050, nearly 50% of the global population will be58

affected. Myopia, defined by a spherical equivalent (SE) ≤ -0.5 diopters, can lead to59

visual impairments that greatly reduce patients’ quality of life and impose substantial60

economic burdens [2]. All degrees of myopia pose potential risks for adverse changes61

in ocular tissues, especially at high levels of myopia (defined as spherical equiva-62

lent worse than -5.0 or -6.0 diopters) and pathologic myopia (resulting in irreversible63

visual impairment or blindness due to pathological retinal changes secondary to high64

myopia) [3]. Ophthalmic examinations, typically involving fundus imaging, are nec-65

essary for detecting and diagnosing relevant fundus lesions. While traditional color66

fundus photography (CFP) captures the retina within 30–60 degrees, novel imaging67

modalities such as ultra-widefield (UWF) imaging with a field of view ranging from68

100 to 200 degrees [4], can capture retinal lesions missed by CFP, leading to improved69

screening accuracy and early detection. Despite the increasing use of advanced reti-70

nal imaging in ophthalmic practices, publicly available UWF datasets remain scarce,71

which hinders the development of diagnostic and support systems needed to help72

clinicians interpret these advanced imaging modalities.73

Recent advancements in deep learning (DL) have made it possible to automati-74

cally process medical images for various tasks, achieving performance comparable to75

human experts. In the case of retinal diseases, DL models not only accurately diagnose76
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and monitor conditions such as diabetic retinopathy and age-related macular degen-77

eration from retinal images [5–7], but also assist in developing personalized treatment78

plans. In addition, DL has been applied to myopia-related screening, assessing the79

risk of myopia progression by analyzing retinal images and enabling early interven-80

tion. Although these methods are robust, there is a need for more investigation into81

sophisticated pathological patterns. A system called the Meta-Analysis of Pathologic82

Myopia (META-PM) [8] categorizes myopic atrophic components into five classes: no83

myopic retinal lesions (Grade 0), tessellated fundus only (Grade 1), diffuse chorioreti-84

nal atrophy (Grade 2), patchy chorioretinal atrophy (Grade 3), and macular atrophy85

(Grade 4). Pathologic myopia is now defined as myopic maculopathy (according to86

META-PM criteria: grade 2 or above) or posterior staphyloma [9]. Posterior staphy-87

loma manifests as an outpouching of the ocular wall, with a curvature radius less than88

that of the surrounding sclera. PS often leads to changes in the retina, choroid, and89

nerve fiber layer, subsequently affecting the patient’s vision. Early identification of90

PS is crucial because it can lead to severe complications, such as retinal detachment,91

macular hemorrhage, and choroidal neovascularization, all of which may cause irre-92

versible vision loss. MM is one of the primary causes of vision deterioration in patients93

with high myopia because the macula is the area of the retina with the highest visual94

acuity, and any damage there can significantly impact vision quality. Early diagnosis95

and management of these conditions can help slow or prevent disease progression and96

reduce the risk of vision loss. Existing research has some limitations despite advance-97

ments. Firstly, more attention should be given to myopic maculopathy and posterior98

staphyloma. This is due to the difficulty in identifying their complete contour on CFP99

accurately, hence identifying these lesions requires high-quality ultra-widefield (UWF)100

imaging data. UWF imaging allows for precise diagnosis of peripheral lesions and the101

edges of staphyloma, appearing as a dark gray band-shaped ring with twisted retinal102

and choroidal vessels. However, the high equipment cost, complex operations, and data103

acquisition expenses make large-scale UWF data collection challenging for many stud-104

ies. Secondly, previous studies often use balanced data, ignoring the significant data105

imbalance in real-world scenarios [10]. Retinal lesions in pathologic myopia are highly106

heterogeneous and often coexist with other types of retinal lesions, creating imbalanced107

data and making it more challenging to distinguish PS from MM accurately. Thirdly,108

detecting PS and MM involves complex multi-label learning tasks, which pose higher109

demands on algorithm models. Many existing studies focus on identifying a single110

lesion or simpler pathologies and cannot handle multiple complex coexisting lesions.111

Thus, traditional imaging data and diagnostic tools may not provide precise classifica-112

tions, limiting the exploration of these specific lesions. Lastly, there has been a strong113

focus on building large and complex models [11]. While these models are powerful,114

due to their size and complexity, they need to be more adaptable for use in medical115

devices, especially in resource-constrained clinical environments. Therefore, the cre-116

ation of the PSMM dataset fills these gaps, providing a high-quality data source that117

supports the precise identification of multiple lesions and clinical research, thereby118

improving patient diagnosis and treatment outcomes.119

Previous studies employing DL models for myopia detection often rely on CFP,120

assessing only a narrow range of the posterior pole of the retina [12]. However, with121
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the elongation of the eyeball in highly myopic eyes, the likelihood of peripheral retinal122

lesions increases significantly, necessitating the use of UWF imaging for comprehen-123

sive evaluation [13]. With this in mind, we suggest adopting a recognition system for124

peripheral retinal lesions: no peripheral lesion (NoPL), lattice degeneration or cys-125

tic retinal tuft (LDoCRT), holes or tears (HoT), rhegmatogenous retinal detachment126

(RRD), and postoperative cases (PC). When combined with UWF imaging, this sys-127

tem allows for a thorough assessment of retinal health in myopic patients. For instance,128

peripheral lattice degeneration, seen as a white lattice pattern on UWF images due to129

retinal microvascular occlusion, may develop into various-sized circular atrophic holes130

over time. These changes are closely associated with rhegmatogenous retinal detach-131

ment, potentially giving rise to severe visual impairment [14]. Evaluating peripheral132

retinal lesions significantly enhances our ability to comprehensively monitor and treat133

myopic retinal changes by enabling the earlier detection and management of such134

sight-threatening complications.135

In this work, we present a detailed and efficient workflow (Fig. 1) for identify-136

ing challenging lesions. We compile a dataset containing UWF images of pathologic137

myopia with clinically significant lesions from multiple medical sources. Experienced138

physicians label images related to posterior staphyloma, myopic maculopathy, and139

peripheral lesions under the guidance of META-PM and double-check annotations to140

ensure accuracy. With the support of this curated dataset, we are able to identify clin-141

ically significant pathological patterns by developing an end-to-end framework called142

RealMNet that embraces Real-world Myopia diagnosis. Thanks to the adoption of143

a compact and efficient vision transformer [15] as our backbone, the framework is144

lightweight enough to be applied to modern medical devices. We approach this chal-145

lenge as a multi-label learning task for two reasons: first, posterior staphyloma may be146

present with myopic maculopathy, jointly indicating pathologic myopia, and second,147

peripheral lesions could coexist. We comprehensively evaluate RealMNet’s perfor-148

mance using three distinct experimental protocols: centralized inference, main-source149

robustness, and cyclic-source generalizability. Under the centralized inference proto-150

col, we compare the inference performance of RealMNet on the PSMM dataset against151

four pretrained comparison models: DeiT [16], EfficientNet [17], ConvNeXt [18], and152

Swin Transformer [19]. The other two protocols are used to assess the robustness and153

generalizability of the model for lesion identification, which is crucial for clinical use.154

We evaluate labeling efficiency using RealMNet with increasing resolutions and inter-155

pret parameters at different stages of the backbone. We demonstrate the effectiveness156

of regularization techniques used in the proposed method with extensive evaluation157

experiments. Furthermore, we investigate the potential negative impact of the physi-158

cal device boundaries present in images captured by modern ultra-widefield imaging,159

which may impede peripheral information. The boundaries have been segmented out160

to make sure that the learning process of the model is not compromised. To visually161

interpret the model’s decision-making for inference, we utilize an improved version of162

gradient-weighted class activation mapping called Grad-CAM++ that better localizes163

objects and explains occurrences of multiple objects of a class in a single image [20].164

The model performance is reported with all-around measures (details are listed in165
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Evaluation metrics/Supplemental materials) for evaluating both bipartitions and rank-166

ings concerning the ground truth of multi-label data. All P values are calculated with167

a two-sided t-test between RealMNet and the other comparison model to check for168

significance.169

2 Results170

2.1 Multi-source curated UWF myopia dataset provides a171

solid foundation for multi-lesion identification172

We gathered a specialized dataset called PSMM derived from five distinct hospital173

sources for identifying posterior staphyloma (PS) and myopic maculopathy (MM) that174

could assist clinicians in diagnosing pathologic myopia. The PSMM dataset comprised175

43,371 ultra-widefield images of 4,560 patients who sustained high myopia or patho-176

logic myopia after data filtering for quality assurance. We also separately managed the177

five sub-sources that integrated the PSMM dataset to facilitate characteristic research.178

Generally, the PSMM dataset provided a competitive scale considering the expense of179

ultra-widefield imaging that captured a broader retinal field of view compared to color180

fundus photography (Fig. A1a). Experienced clinicians labeled posterior staphyloma181

with binary annotations to indicate its presence (NoPS or PS) and myopic macu-182

lopathy with five categories: no myopic retinal lesions (NoMRL), tessellated fundus183

only (TFO), diffuse chorioretinal atrophy (DCA), patchy chorioretinal atrophy (PCA),184

and macular atrophy (MA). An intuitive illustration of these pathological patterns185

can be found in (Fig. A1b). Notably, posterior staphyloma and myopic maculopathy186

may appear simultaneously, forming multi-label datasets (MLDs). The PSMM dataset187

exhibits an imbalanced distribution (Fig. 2), as exposed in other retinal diseases, pos-188

ing a significant challenge to method development. Overall, the PSMM dataset is189

well-curated on fine-grained multi-lesion recognition and the diagnosis of pathologic190

myopia, which also provides convenience for those developing deep learning models191

for recognizing retinal diseases, as well as empowering large-parametric deep learning192

techniques like foundation models to discern retinal diseases requiring ultra-widefield193

images.194

2.2 End-to-end lightweight hybrid framework with195

optimization mitigates multi-label imbalance issue196

The imbalance present in multi-label datasets (MLDs) significantly impacts the197

model’s performance, leading to biased learning and inadequate knowledge acquisi-198

tion. This study presented three techniques to tackle the imbalance issue: resampling199

methods, classifier adaptation, and cost-sensitive calibration. Cost-sensitive calibra-200

tion addressed the multi-label imbalance by developing the loss function from Binary201

Cross-Entropy (BCE) Loss [21], considering that multi-label learning involves decom-202

posing the multi-label task into multiple binary tasks, each focusing on distinguishing203

samples within a target class category. We gradually introduced tunable parameters204

for BCE Loss to alleviate the imbalance issue on the PSMM dataset. Initially, We205

attempted to train the model using Binary Cross-Entropy (BCE) Loss, and to address206
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class imbalance, we implemented a commonly used weighting factor α ∈ [0, 1] to form207

an α-balanced BCE Loss. In our experiments, we discovered that the model performed208

better when using an α value of 0.75 (Table A5), which aligned with its original use209

in the dense detection task. We introduced a focusing parameter, γ, to adjust the210

loss function and concentrate training on difficult negative samples by reducing the211

impact of easy samples [22]. We tested different α values for each candidate focusing212

parameter within the list of [0, 0.1, 0.2, 0.5, 1, 2, 5], as recommended in the original lit-213

erature. We found that increasing the focusing parameter did not yield any benefits214

(Table A6), possibly due to the elimination of gradients from rare positive samples215

while devaluing the contribution from easy negatives. To address this issue, we utilized216

γ+ and γ− to separate the focusing levels of positive and negative samples, allowing217

the model to emphasize the positive samples while minimizing the influence of easy218

negative samples [23]. The experimentally determined cost-sensitive calibration helps219

the model learn from balanced samples (Fig. A4a), ultimately leading to optimal per-220

formance with γ+ = 3 and γ− = 4. We introduced a probability-shifting mechanism to221

assess the influence of very easy and mislabeled negative samples. The results showed222

that adjusting the shifted probability did not improve the model’s performance, indi-223

cating that our dataset was well-curated and had minimal errors. We also studied a224

state-of-the-art approach called Two-way Loss [24], which is exclusively designed for225

multi-label learning. This method uses relative comparison with the softmax function.226

We adjusted the margins between positive and negative logits using positive temper-227

ature TP and negative temperature TN . We evaluated different values for TP and TN228

within the list of [0.5, 1, 2, 4]. The results (Table A7) showed a similar trend to the229

original study, but the best-performing choice still did not outperform our implemen-230

tation using asymmetric focusing. Classifier adaptation involves residual attention,231

combining class-specific and class-agnostic features during the inference stage [25]. We232

introduced a tunable parameter λ to leverage these two types of features, searching233

within the range of [0.2, 1.4] with a step of 0.2, as done in the original literature using234

Vision Transformer (ViT) as the backbone on the MS-COCO dataset. The residual235

attention was extended in a multi-head (H) manner, initially set at H = 8. The model236

with λ = 1.2 and H = 2 achieved better mean Average Precision (mAP) compared to237

other settings while maintaining similar performance on other evaluation metrics A4.238

2.3 Multi-protocol experiments demonstrate valued inference239

with robustness and generalizability240

We devised three distinct experimental protocols 1c to excavate the model’s inference241

capacity, robustness, and generalizability (see detailed strategies in ’Experimental pro-242

tocols’). The results (Fig. 3a) under the centralized inference protocol revealed that243

RealMNet outperformed (P < 0.001) all other benchmark approaches on F1 Score244

with 0.7903 (95% CI 0.7531-0.8275), mAP with 0.8398 (95% CI 0.7923-0.8873), and245

AUROC with 0.9736 (95% CI 0.9682-0.9791). Unless otherwise noted, these three met-246

rics were considered the primary criteria for measuring the model’s performance. We247

additionally presented other evaluation metrics for complementary analysis (’Evalua-248

tion metrics’ in Methods). RealMNet achieved the lowest Coverage of 2.2586 (95% CI249

2.2204-2.2968), significantly surpassing (P < 0.001) other models, indicating that the250
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proposed model could better approximate the realistic situation. Precision and Recall251

were two opposite measures, with one tending to be high and the other low. In our252

case, we preferred a superior Recall for developing a discrimination model that would253

identify as many potential positive samples as possible to aid in screening. Guided by254

the main-source robustness protocol, we discovered that the model trained exclusively255

on the main subset could reliably identify posterior staphyloma and myopic macu-256

lopathy on auxiliary subsets in general (Fig. 3b). On the other hand, it illustrated257

abundant task-specific knowledge implied in the primary source data. RealMNet rep-258

resented robustness on the SUSTech subset, achieving an F1 Score of 0.7956 (95% CI259

0.7187-0.8724), mAP of 0.8927 (95% CI 0.8211-0.9642), and AUROC of 0.9869 (95%260

CI 0.9830-0.9908). Even when tested on the Zhongshan subset whose hard negative261

samples may impeded model inference, our model still maintained acceptable per-262

formance (mean value) with an F1 score of over 70%, mAP over 80%, and AUROC263

over 95%. When examined under the cyclic-source generalizability protocol, RealM-264

Net exhibited similar performance to that under the main-source robustness protocol265

(Fig. 3c), reflecting its stable exertion when additional information was introduced. On266

the Zhongshan subset, the model displayed difficulty in correctly distinguishing a small267

fraction of label pairs, as evidenced by a Hamming Loss of 0.0985 (95% CI 0.0898-268

0.1072) and a Ranking Loss of 0.0530 (95% 0.0467-0.0593). This could be attributed to269

a relatively high Coverage value, indicating that the model required more steps to infer270

all relevant labels for the samples (posterior staphyloma and myopic maculopathy).271

2.4 Interpretable workflow facilitates convincing diagnosis of272

pathologic myopia in clinical application273

Even though deep learning methods offer powerful capacities, they are commonly274

known as black boxes due to their intricate inference mechanisms [26]. To be useful275

in clinical applications, these methods need to be not only efficient but explainable276

and trustworthy. Labeling efficiency refers to the amount of training data and labels277

required to achieve a certain level of performance for a given task, which shows the278

annotation workload for medical experts [11]. RealMNet achieves precise identification279

even with only half of the training resources (Fig. 4a), demonstrating its capabil-280

ity to capture clinically significant pathological patterns at a low-level feature space.281

RealMNet-384 exemplified a remarkable improvement (mean value) in F1 Score by282

10%, mAP by 10%, and AUROC by 1%, despite an increase in labeling from 20% to283

50%. Although the RealMNet-224 and the RealMNet-384 performed similarly as more284

training data was used, RealMNet-512 consistently achieved superior performance,285

demonstrating the non-trivial benefits of abundant information involved in higher res-286

olution. The model could have gained even slightly higher performance when using287

ninety percent of the training resources; we insisted that the model trained on all avail-288

able data eliminate the variability and produce unbiased results. We aimed to assess289

the contribution of each stage of the used backbone by measuring parameter efficiency290

(Fig. 4b). Freezing the first one or two layers of the model did not decrease perfor-291

mance, indicating that the model retained low-level general features from pretraining292

distillation on large-scale natural image datasets (e.g., ImageNet-21k). However, the293

performance of RealMNet dropped significantly when the first three or four layers294
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were frozen, indicating that the model still required high-level features related to295

pathological patterns. Furthermore, we observed the efficacy of the regularization used296

in this study. Augmentation is a crucial regularization technique widely adopted in297

deep learning-based approaches to augment training data to avoid overfitting, espe-298

cially when the amount of training data is not large enough in many tasks of medical299

fields. We explored the impact of the proposed simulated augmentation and batch-wise300

augmentation (Fig. 4c) and found that employing these two types of augmentation301

techniques brought a gain of 3.5% on F1 Score, 6.7% on mAP, and 3.2% on AUROC,302

respectively (w/o Aug vs. Aug). The simulated augmentation was used to mirror real-303

world situations. The model’s performance decreased significantly when the simulated304

augmentation was removed (w/o SA vs. Aug). This suggested that the model was305

trained with overly optimistic and simplistic objectives because the training data did306

not represent real-world scenarios. Batch-wise augmentation involved enhancing syn-307

thetic samples by interweaving two samples. Removing batch-wise augmentation did308

not cause a significant loss (w/o BA vs. Aug), indicating that the model had inher-309

ently been adequate to build intra- and inter-affinities between pathological patterns.310

A slight decrease in Ranking Loss and Coverage suggested that batch-wise augmen-311

tation helped the model learn more accurate label distributions. Drop path [27] is312

another regularization technique that markedly circumvents the overfitting issue by313

randomly dropping the neural path of the network. We used the drop path because of314

the overfitting hazard caused by a relatively small scale of training data (Fig. A5c).315

To interpret the panoramic focusing capacity of RealMNet, we considered the poten-316

tial negative impact of the physical device boundaries inevitably imaged along with317

the imaging targets by modern ultra-widefield imaging, which may occlude partial318

information. The comparative experimental results (Fig. A6b) showed that RealM-319

Net was not affected by these barriers, demonstrating its outstanding focusing ability.320

Visual interpretability has been widely recognized as an intuitive representation of the321

decision-making process in deep learning techniques. We adopted an improved ver-322

sion of gradient-weighted class activation mapping (Grad-CAM++) [20] that localized323

objects better and explained occurrences of multiple objects of a class in a single image.324

We generated visualizations of random samples for each category using RealMNet325

(Fig. 5). These heatmaps revealed irregular attentive regions corresponding to diffused326

pathological patterns embodied in different lesion levels, manifesting the explainable327

learning of the proposed model.328

3 Discussion329

In this study, we introduced a novel perspective for assisting in diagnosing pathological330

myopia by means of identifying posterior staphyloma and myopic maculopathy using331

ultra-widefield images with deep learning. We found that there have been many stud-332

ies dedicated to the application of deep learning to assist myopia diagnosis [28, 29].333

However, the majority of these studies overlooked exclusive discrimination mechanisms334

due to a lack of specialized datasets built on ophthalmological expertise. Pathologic335

myopia has been broadly recognized as myopic maculopathy with meticulously defined336
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categories or with the presence of posterior staphyloma [30]. Nonetheless, to our knowl-337

edge, limited research has thoroughly examined these lesions, and there are no publicly338

available datasets for this purpose. To tackle this, we gathered a large-scale dataset339

comprising ultra-widefield images from five distinct hospital sources (Fig. 1a). We340

sought experienced clinicians to label posterior staphyloma with binary annotations to341

indicate its presence (NoPS or PS) and myopic maculopathy with five categories: no342

myopic retinal lesions (NoMRL), tessellated fundus only (TFO), diffuse chorioretinal343

atrophy (DCA), patchy chorioretinal atrophy (PCA), and macular atrophy (MA). We344

built an end-to-end lightweight framework called RealMNet on the basis of the unified345

platform to identify these concurrent lesions with multi-label learning (Fig. 1b). We346

progressively determined resampling approaches (Fig. A5a), cost-sensitive calibration347

(Fig. A4a), and classifier adaption (Fig. A4b) with the development set for mitigat-348

ing negative impacts caused by imbalanced label distributions (Fig. 2). Hence, the349

proposed model was functionally interpretable by identifying these clinically signifi-350

cant lesions and objectively instrumental by alleviating multi-label imbalance issues.351

We devised three experimental protocols (Fig. 1c) to demonstrate the model’s infer-352

ence capacity, robustness, and generalizability. We observed that the proposed model353

outperformed (P < 0.001) all other benchmark approaches (Fig. 3a). Meanwhile, our354

model exhibited good robustness (Fig. 3b) and generalizability (Fig. 3c), even when355

assessed on challenging subsets. For deep learning-based applications in the medi-356

cal field, interpretability is critical when developing convincing workflows. Our model357

exhibited good labeling efficiency, taking different ratios of training data as input358

(Fig.). As a transformer-based architecture with hierarchical design [19], each stage359

of RealMNet maintained helpful knowledge for lesion identification (Fig. 4b). The360

simulated and batch-wise augmentation jointly helped the model avoid over-fitting361

(Fig. 4c). From the heatmaps of the final results, we observed that the model’s atten-362

tion presented a diverse region of interest for different categories. We noticed that363

ultra-widefield images contained boundaries of physical imaging devices, which might364

impede models from effectively capturing helpful information. We constructed the365

dataset based on the scale of the two imaging types in the PSMM dataset (Table A3).366

We employed ResNet-50 as the segmentation backbone and DeepLab-v3 as the seg-367

mentation model to remove these boundaries accurately (Fig. A6a and Table A4).368

The processed data without boundaries was then used to re-trained RealMNet with369

processed data. Results (Fig. A6b) showed that our model was not affected by these370

physical boundaries, demonstrating the model’s prominent capacity to capture infor-371

mative regions. In order to verify that the developed model has a broader application372

impact, we carried out a transfer learning on peripheral lesion discrimination, which373

could simultaneously exist in high myopic eyes (Fig. 6a) and give rise to severe374

visual impairment. The results (Fig. 6b) obtained from transfer learning for RealMNet375

demonstrated promise in detecting peripheral lesions and distinguishing postoperative376

cases (PC).377

Although this work starts from the essential and exclusive discrimination mecha-378

nisms of diagnosing pathologic myopia based on the workflow with deep learning, there379

are still some limitations and challenges to address in the follow-up work. First, our380

model cannot currently recognize “plus” lesions [30], namely, lacquer cracks, myopic381
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choroidal neovascularization, and Fuchs spot, primarily due to insufficient high-quality382

data. Second, although our model performed well with UWF images alone, we have383

not yet incorporated multimodal data (e.g., axial length) to improve performance fur-384

ther. Finally, results on peripheral lesion discrimination exposed limited performance385

on lesions with very few training data (e.g., RRD and HoT). In light of these chal-386

lenges, we propose to gather qualified data on “plus” lesions from additional medical387

sources and integrate clinical textual data such as axial length to improve identifica-388

tion performance. We are optimistic that the developed model would receive excellent389

transfer ability when pretrained on large-scale UWF images instead of natural ones.390

In summary, we offer a dataset comprising high-quality ultra-widefield images and391

introduce a powerful and reliable workflow for identifying clinically significant lesions392

to aid in diagnosing pathologic myopia. Through comprehensive evaluation metrics393

on the hand-crafted PSMM dataset, we have verified the efficacy and efficiency of394

RealMNet relative to competitive benchmark models. RealMNet has demonstrated395

superior robustness and generalizability, offering novel perspectives for deep learning-396

based fine-grained clinical decisions.397

4 Methods398

4.1 Dataset construction399

We show details about the course of data acquisition and labeling. We perform essential400

data processing and stratified data partitioning to facilitate model training.401

4.1.1 Acquisition and labeling402

The PSMM dataset consisted of five sub-sources: ShenzhenEye, SUSTech, LishuiR,403

Zhongshan, and LishuiZ. The ShenzhenEye subset contained 38,922 UWF images of404

4,003 patients collected from Shenzhen Eye Hospital of China between January 1st,405

2019 and December 31st, 2023. The SUSTech subset contained 2,835 UWF images of406

226 patients collected from the Southern University of Science and Technology Hos-407

pital of China between January 1st, 2023 and June 31st, 2023. The LishuiR subset408

contained 938 UWF images of 155 patients collected from Lishui People’s Hospital409

of China between January 1st, 2021 and December 31st, 2023. The Zhongshan subset410

contained 456 UWF images of 85 patients collected from Zhongshan Ophthalmic Cen-411

ter, Sun Yat-sen University of China. The LishuiZ subset contained 220 UWF images412

of 91 patients collected from Lishui Central Hospital of China between January 1st,413

2021 and December 31st, 2023. Ultimately, we integrated these resources to estab-414

lish the PSMM dataset that contained 43,371 UWF images of 4,560 patients. Two415

UWF scanning laser ophthalmoscopy imaging devices captured these images, Day-416

tona (P200T) and California (P200DTx). We retrieved these images by the keywords417

of ⟨High Myopia,Pathologic Myopia⟩. We were prone to partially retrieve severe sam-418

ples from the hospital to form the Zhongshan subset as a challenging subset. Fewer419

samples were collected in the LishuiR and LishuiZ subsets due to certain limitations420

in the medical record management of the two hospitals, despite retrieving them over421
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a long period. The ShenzhenEye subset naturally served as the main subset in pro-422

portion, and the other fours as auxiliary subsets. Two junior clinicians labeled these423

UWF images, and one senior clinician then double-checked the labeled images by dis-424

carding distorted or damaged images for rigorous quality assurance. The composition425

of the hand-crafted PSMM dataset and its integral subsets are presented in Table A1.426

4.1.2 Data processing and stratified partition427

We desensitized all the data to prevent privacy exposure. We centralized the objec-428

tive (photographing area) by removing futile black outer boundaries and then resized429

images beforehand to facilitate model training. For ease of application and adapta-430

tion, we structured the dataset following the format of the PASCAL Visual Object431

Classes Challenge (PASCAL VOC) 2007 dataset [31], which is a well-known dataset432

in the computer vision field developed to recognize objects in realistic scenes. Due to433

a limited amount of data, an increasing number of published methods are trained on434

the training set and evaluated on the testing set directly to showcase optimal perfor-435

mance presentation regardless of fair comparison. However, in real-world scenarios,436

researchers need to develop reliable methods in various situations. This means it is437

crucial to evaluate these methods on a separate development set for convincing model438

validation. In order to support our claim, we divided the PSMM dataset into three439

separate parts: training, development, and testing sets with a distribution of 7:1.5:1.5.440

This allowed us to assess the research using the development set and then finalize the441

method and evaluate it using the unseen testing set. While dividing data into different442

sets is common in deep learning tasks, it becomes more complex when dealing with the443

clinical challenge presented in this study. Notably, each patient typically has multiple444

UWF images, which can occur in two scenarios: multiple images are taken in a single445

examination to ensure an accurate diagnosis, or images are taken at different times446

during multiple examinations. To ensure reliable photography, several UWF images447

are captured at the same time for each patient, and many patients undergo examina-448

tions at different times. As a result, it’s not feasible to split UWF images from the same449

patient into different sets during data partitioning. Furthermore, as mentioned earlier,450

our objective involves a multi-label learning task, which further complicates the data451

partitioning process. To address this, we adopted an approach where we assigned a452

single-class label for each patient and employed a stratified strategy to ensure indepen-453

dent and identically distributed partitioning [32]. Specifically, we assigned a pseudo454

single-class label that was quantitatively dominant over all labels of UWF images for455

each patient and then stratified the patient image groups into training, development,456

and testing sets.457

4.2 End-to-end lightweight hybrid framwork458

We present details about the feature extraction backbone and optimized designs459

with cost-sensitive calibration and classifier adaptation for multi-label imbalance460

alleviation.461
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4.2.1 Lightweight pretraining distillation backbone462

We harness TinyViT [15] as the fundamental backbone to ensure the model achieves463

excellent performance while retaining lightweight. TinyViT is favored for its applica-464

tion of distillation during pretraining for knowledge transfer. We employ a hierarchical465

design to address the need for multi-scale features in identifying pathological pat-466

terns. This architecture comprises four stages, each featuring a gradual reduction in467

resolution akin to the Swin Transformer [19] and LeViT [33]. The patch embedding468

block incorporates two convolutions with a 3x3 kernel, a stride of 2, and a padding469

of 1. In the initial stage, we implement lightweight and efficient MBConvs [34] and470

downsampling blocks, recognizing that convolutions at earlier layers can proficiently471

learn low-level representations due to their strong inductive biases. The subsequent472

three stages are constructed with transformer blocks, leveraging window attention to473

mitigate computational costs. To capture local information, we introduce attention474

biases and a 3x3 depth-wise convolution between attention and MLP. Each block in475

the initial stage, as well as attention and MLP blocks, is complemented by a residual476

connection. The activation functions adhere to the GELU model, and the normal-477

ization layers for convolution and linear operations are BatchNorm and LayerNorm,478

respectively. The embedded dimensions in each stage of the adopted backbone are 96,479

192, 384, and 576. Furthermore, the number of blocks in each stage of the backbone480

corresponds to that of Swin-T: 2, 2, 6, and 2.481

4.2.2 Cost-sensitive calibration482

Cost-sensitive methods are practical and efficient techniques that take into account483

the costs resulting from prediction mistakes made by the model. When dealing with484

the complication of lesions in terms of posterior staphyloma and myopic maculopathy,485

we aim to explore cost-sensitive approaches suitable for multi-label learning. We begin486

by using the Binary Cross-Entropy (BCE) Loss, based on cross-entropy in information487

theory. In this context, cross-entropy of the distribution q relative to a distribution p488

over a given set is defined as follows:489

H (p, q) = −Ep [log q]

where Ep [·] is the expected value operator regarding the distribution p. Cross-entropy490

can be utilized to create a loss function in machine learning and optimization:491

H (p, q) = −
∑

i

pi log qi = − [y log ŷ + (1− y) log (1− ŷ)]

where y means the ground-truth and ŷ means the predictions from the model. Next,492

we introduce a weight factor α ∈ [0, 1] to help tackle class imbalance and a modulating493

factor (1− p)
γ
to reshape the loss function, thereby reducing the emphasis on easy494

examples and focusing training on challenging negatives [22]. Till now, we define the495

cost-sensitive calibration (CSC) as follows:496

CSC = −α [pγ log p+ (1− p)γ log (1− p)]
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where p = σ (z) is the prediction probability given output logits z and γ is the focusing497

parameter. We also separate the focusing levels of positive and negative samples to498

avoid eliminating gradients from rare positive samples when setting a high value for499

γ. Additionally, we examine the effects of asymmetric probability shifting, achieved500

by setting a probability margin m ≥ 0 to reject mislabeled negative samples [23].501

Therefore, the ultimate CSC is defined as follows:502

CSC = −α [(pm)
γ− log p+ (1− p)γ+ log (1− p)]

where pm = max (p−m, 0) is the shifted probability, γ+ and γ− are positive and503

negative focusing parameters, respectively. Furthermore, we evaluate the effectiveness504

of a state-of-the-art cost-sensitive method called Two-way Loss [24], specially designed505

for multi-label learning. We follow the original computational formula:506

ℓ = softplus



TN log
∑

n∈N

e
xn
TN + TP log

∑

p∈P

e
−

xp

TP





where softplus(·) = log[1+exp(·)] , P means positive labels, N means negative labels,507

TN and TN are two temperatures applied to negative and positive logits, respectively.508

We fine-tune temperature parameters through grid search for optimal performance.509

4.2.3 Classifier adaptation510

Classifier adaptation is technically complex but helpful for addressing multi-label511

imbalance issues by adjusting the model’s classifier design. The design of the imple-512

mented classifier is inspired by a simple and efficient module called class-specific513

residual attention [25] that achieves state-of-the-art results on multi-label recognition.514

Given an input image I with the scale ofH×W , the backbone as a feature extractor515

F transforms the input image into a feature tensor x ∈ R
d×h×w by x = F (I; θ),516

where θ represents parameters of the backbone. The feature tensor is decoupled as517

x1,x2, · · · ,xP , where xp ∈ R
d indicates the p-th feature tensor in positions P = h×w.518

The class-specific attention scores are presented by sip =
exp(T x

⊤
p ci)

∑
P
l=1

exp(T x
⊤
l
ci)

, where Here,519

sip can be regarded as the probability of i-th class appearing at the position p with520

∑P
p=1 s

i
p = 1 and T stands for the temperature controlling the sharpness of the scores.521

The class-specific feature vector for i-th class is vi
spec =

∑P
p=1 s

i
pxp. The class-agnostic522

feature vector for the entire image is vagno = 1
P

∑P
p xp. The final feature vector for523

the i-th class is v
i = vagno + λvi

spec. The classifier produces ŷ ≜
(

y1, y2, · · · , yn
)

=524

(

c
⊤
1 v

1, c⊤2 v
2, · · · , c⊤n v

n
)

, where n stands for the number of classes. The final prediction525

is produced with multi-head extension to the residual attention by ŷ =
∑H

h=1 ŷTh
,526

where ŷTh
∈ R

n represents the logits of head h.527
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4.3 Experimental protocols528

We introduced three distinct experiment protocols that naturally empowered both the529

internal and external validation of the model, quantitatively demonstrating that the530

proposed model was efficient with good robustness and generalizability.531

4.3.1 Centralized inference532

The centralized inference protocol aimed to demonstrate the inference capacity of533

models directly on the intact PSMM dataset. Models were trained on the training set of534

the PSMM dataset and tested on the testing set of the PSMM dataset. Models learned535

task-specific knowledge from all available training resources and were developed on536

the development set of the PSMM dataset, eventually inferring all available unseen537

testing resources. In our experiments, we compared our method, RealMNet, with four538

widely recognized models under the centralized inference protocol, in which models539

were sufficiently motivated for optimal identification performance.540

4.3.2 Main-source robustness541

The main-source robustness protocol aimed to demonstrate the robustness of models542

on the separate PSMM dataset. Models were trained solely on the main subset and543

tested on four auxiliary subsets, the averaged performances of which were provided.544

All data from the main-source dataset comprised the training set, and each auxiliary-545

center dataset served as the testing set separately. In our experiments, we implemented546

our method, RealMNet, under the main-source robustness protocol for robustness547

verification.548

4.3.3 Cyclic-source generalization549

The cyclic-source generalizability protocol aimed to demonstrate the generalizability550

of models on the separate PSMM dataset. Models were trained on the main-source551

dataset combined with three auxiliary-center datasets and tested on the rest of the552

auxiliary dataset. The performances of four cyclic experiments were provided. In553

our experiments, we implemented our method, RealMNet, under the cyclic-source554

generalizability protocol for generalization verification.555

4.4 Evaluation metrics556

Cutting-edge artificial intelligence models frequently excel based on a single or a few557

evaluation metrics. However, this can introduce bias into the results and impact the558

perception of their scientific objectivity [35]. This issue is particularly relevant in multi-559

label learning, which is more intricate than single- and multi-class learning [36]. In our560

study, we opted for comprehensive measures to assess both bipartitions and rankings,561

considering the characteristics of multi-label data [37].562

Considering a development set that has multi-label samples (xi,yi) where i =563

1, ..., N and N means the number of samples. The labelset of i-th sample yi ⊆ L564

where L = {λl : j = 1, ..., L} is the set of all ground-truth labels and L means the565

number of labels. For each label λ, the rank is termed as ri (λ). The predictions made566
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by the Multi-Label Classifier (MLC) are defined as ŷi. Let tpλ,fpλ,tnλ, and fnλ be567

the number of true positives, false positives, true negatives, and false negatives after568

binary evaluation for a label λ.569

For the evaluation of bipartitions, we use Precision = tp
tp+tp to reflect the ability570

not to label as positive a sample that is negative. We use Recall = tp
tp+tp (also called571

Sensitivity) to reflect the ability to find all positive samples. A good discrimination572

model should be sensitive in identifying as many potential positive samples as possi-573

ble to help screen in medical scenarios. The F-measure is the harmonic mean of the574

Precision and Recall that symmetrically represents Precision and Recall in one met-575

ric. We use F1 Score = 2Precision×Recall
Precision+Recall to reveal the balanced ability of the model to576

both capture positive cases (Recall) and be accurate with the cases it does capture577

(Precision), which is exceptionally able to measure performance objectively when the578

class balance is skewed. We use mean Average Precision (mAP) to reflect the aver-579

age fraction of relevant labels ranked higher than one other relevant label, which is580

calculated by:581

mAP =
1

L

L
∑

λ=1

∑

n

(Rn −Rn−1)Pn

where Rn and Pn stand for Precision and Recall at the n-th threshold, respectively.582

The AUROC (Area Under the Receiver Operating Characteristic Curve) indicates the583

level of separability of a model. This metric is calculated as the area under the Receiver584

Operating Characteristic Curve (ROC). A larger AUROC indicates that the model can585

achieve a high true positive rate while maintaining a low false positive rate. Essentially,586

it demonstrates the model’s ability to differentiate between classes. The measures587

above can be calculated using two types of averaging operations: macro-averaging and588

micro-averaging. Specifically, given a bipartition-based measure B,589

Bmacro =
1

L

L
∑

λ=1

B (tpλ, fpλ, tnλ, fnλ)

Bmicro = B

(

L
∑

λ=1

tpλ,

L
∑

λ=1

fpλ,

L
∑

λ=1

tnλ,

L
∑

λ=1

fnλ

)

We do not use popular Accuracy as an evaluation metric, which overestimates models590

that only predict well for the majority class by simplistically measuring the absolute591

amount of correct predictions. We use Hamming Loss to measure the proportion of592

incorrectly classified instance-label pairs, which is defined as follows:593

Hamming Loss =
1

NL

N
∑

i=1

|yi ̸= ŷi|

For the evaluation of rankings, we use Coverage to assess the average number of594

steps required to encompass all relevant labels in the ranked label list for each example,595
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which is defined as follows:596

Coverage =
1

N

N
∑

i=1

max
λ∈yi

ri (λ)− 1

We use Ranking Loss to evaluate the fraction of reversely ordered label pairs, which597

is defined as follows:598

Ranking Loss =
1

N |yi||yi|

N
∑

i=1

| {(λa, λb) : ri (λa) > ri (λb) , (λa, λb) ∈ yi × yi} |

where yi is the complementary set of yi with respect to L.599

4.5 Implementation details600

4.5.1 Benchmark approaches601

Our model retained lightweight thanks to pretraining distillation techniques and602

leveraged hierarchical transformer architectures that incorporated convolution opera-603

tions. Therefore, we selected various widely used benchmark counterparts: DeiT [16],604

ConvNeXt [18], EfficientNet [17], and Swin Tranformer [19]. Specifically, DeiT is a605

convolution-free transformer trained with a distillation procedure. ConvNeXt is a pure606

ConvNet that is modernized toward the design of a vision transformer. EfficientNet is607

a ConvNet designed using neural architecture search to enable model scaling with sig-608

nificantly fewer parameters. Swin Transformer is a hierarchical transformer that can609

be modeled at various scales. We compare RealMNet to these benchmark approaches610

with respect to model development in Table 4.611

4.5.2 Training and testing612

We approached the problem in this study as a multi-label learning task to account613

for the complex relationships between pathological patterns and explore their under-614

lying interdependencies. We chose TinyViT-21m as the feature extractor backbone615

of RealMNet and initialized it with weights pretrained on ImageNet-21k using pre-616

training distillation. The image size was set at 384×384 for model development and617

512×512 for optimal performance. The model was optimized using Adam with decou-618

pled weight decay (AdamW) [38] with an initial learning rate of 1e-4 and a weight619

decay of 0.05, trained with a batch size of 16 per graphics processing unit. We imple-620

mented warmup for 10% of the total 50 epochs, with a starting factor of 1e-2, followed621

by a cosine annealing schedule with a learning rate of 1e-6. A drop path rate of 0.5622

was used to prevent over-fitting. We employed two types of augmentation techniques:623

simulated and batch-wise. Simulated augmentation was intended to mirror real-world624

scenarios by means of spatial-level and pixel-level transformation. For spatial-level625

transformation, we used a random affine, random flip, and random erasing. For pixel-626

level transformation, we used a Gaussian blur, Gauss noise, and Color jitter. The627

batch-wise transformation involved Mixup [39] and CutMix [40]. For simplicity, we628
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used the same parameter settings as in the previous study [32] for UWF images. We629

leveraged asymmetric focusing as a cost-sensitive calibration with tunable parameters630

(γ+ = 3 and γ− = 4). We harnessed classifier adaptation with the leveraging parame-631

ter λ = 1.2 and H = 2 multi-head attention. In the centralized inference protocol, the632

entire PSMM dataset is divided into a training set, a development set, and a test set633

at a ratio of 7:1.5:1.5 using stratified partitioning. In the main-source robustness pro-634

tocol, the ShenzhenEye subset is utilized as the training set, while the remaining four635

source subsets take turns as the test set. In the cyclic-source generalizability protocol,636

the ShenzhenEye subset and three of the remaining four sources are used as the train-637

ing set, and testing is conducted on the subset of the last source. In all experimental638

protocols, the ML-RUS [41] resampling method was applied to the training set only,639

with an undersampling ratio of 0.2. Experiments were deterministic and reproducible,640

with a fixed seed of 42. We conducted the training and testing on the OpenMMLab641

platform using 4 NVIDIA GeForce RTX 4090 GPUs.642

4.6 Extensibility643

4.6.1 Broader impact statement644

The inherent patterns of the model developed in this study make it easy to use for645

tasks concerning concurrent lesion identification. In this study, we emphasized the sig-646

nificance of identifying peripheral retinal lesions in highly myopic eyes. To resolve this647

challenge, we employed our model by initializing the backbone with weights trained on648

the PSMM dataset and then fine-tuning the model on data specific to peripheral reti-649

nal lesions. We observed that the fine-tuned model generally performed well, with an650

AUROC of 0.8642 (95% CI 0.8405-0.8880) in discerning concurrent peripheral retinal651

regions with the proposed off-the-shelf workflow without bells and whistles. We found652

that the fine-tuned model could accurately perceive postoperative cases (PC) with an653

F1 Score of 0.8394 (95% CI 0.8033-0.8754), mAP of 0.8894 (95% CI 0.8580-0.9208),654

and AUROC of 0.9029 (95% CI 0.8721-0.9336). We inferred an inferior capacity to dis-655

tinguish rhegmatogenous retinal detachment (RRD) and holes or tears (HoT), possibly656

due to the scarcity of real-world data. Notably, we used consistent training settings for657

the intuitive perception of transfer capacity, which signified the potential for improved658

performance with further investigation. The success of our workflow in identifying659

peripheral retinal lesions highlights its broader utility for enhancing the diagnosis of660

retinal diseases and other complex medical scenarios.661
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Fig. 1: General overview of the study. a, Data machining: data are collected from
one main center and four auxiliary centers. After double-checking labeling, quality fil-
tering, and essential processing, a stratified partition is implemented to ensure that
the distribution of lesions remains similar across sets. Resampling and augmentation
techniques are then used to alleviate label imbalance. b, Model training and inference:
the pretraining-distilled small parametric model is task-specifically fine-tuned with
asymmetric focusing and classifier adaptation, which complementally mitigate label
imbalance. c, Experimental protocols: three protocols are designed to demonstrate
precise inference, robustness, and generalizability of the proposed method. All experi-
ments are implemented by bootstrapping the testing set 1,000 times. d, Interpretable
workflow: Model efficiencies of dataset labeling, training parameters, regularization
techniques, and focusing regions are extensively examined. Visualizations of gradient-
weighted class activation mapping are provided for intuitive interpretations. e, Model
development and assessment: Models are progressively developed through strategy
determination, and their performance is assessed on a unified deployment platform
using all-around evaluation metrics.
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Fig. 2: Statistics and complications associated with lesions of posterior
staphyloma and myopic maculopathy. a, Statistical analysis of the seven cat-
egories in the PSMM dataset and its subsets, with specific values assigned to the
minimum two categories of each dataset. b, Illustrations of complications arising from
posterior staphyloma and myopic maculopathy. Sankey diagrams are plotted to illus-
trate the distribution of these complications in the PSMM dataset and its subsets.
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Fig. 3: Model performance under three experimental protocols. a, Evaluat-
ing model inference capability using the centralized inference protocol. The proposed
models are compared to four well-known benchmarks: DeiT, ConvNeXt, EfficientNet,
and Swin Transformer. b, Assessing model robustness by training on the main source
subset and testing on four auxiliary source subsets under the main-source robustness
protocol. c, Assessing model generalizability by training on the main source subset
combined with three of the four auxiliary source subsets and testing on the remaining
subset under the cyclic-source generalizability protocol. The error bars represent the
95% confidence interval (CI) of the estimates, and the bar center represents the mean
estimate of the displayed metric. The estimates are computed by generating a boot-
strap distribution with 1,000 bootstrap samples for corresponding testing sets with
n=1,000 samples.
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Fig. 4: Efficiency of RealMNet in identifying posterior staphyloma and
myopic maculopathy on the PSMM dataset. a, Labeling efficiency: we progres-
sively increase the amount of training data and labels to achieve precise and stable
performance. The 95% confidence interval (CI) of the displayed metrics are plotted in
dotted lines, and the central lines indicate the mean value. b, Parameter efficiency:
we freeze training parameters from different stages to observe the contribution of each
stage. c, Augmentation efficiency: We ablate two types of augmentation techniques,
namely simulated augmentation (SA) and batch-wise augmentation (BA), to observe
the performance gains that RealMNet gets as a result of these techniques. The error
bars represent 95% CI of the estimates, and the bar center represents the mean esti-
mate of the displayed metric. The estimates are computed by generating a bootstrap
distribution with 1,000 bootstrap samples for corresponding testing sets with n=1,000
samples.
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Samples NoPS PS NoMRL TFO DCA PCA MA

Fig. 5: We generated visualizations using an improved version of gradient-weighted
class activation mapping (Grad-CAM++). These visualizations show the predictions
of RealMNet for each category of posterior staphyloma and myopic maculopathy. By
merging the heatmaps with the original images, we highlight the dispersed regions that
are associated with lesions related to posterior staphyloma and myopic maculopathy.
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Fig. 6: Identifying complicated peripheral lesions. a, Concurrent distribution
of peripheral lesions. Peripheral lesions may have different concurrent relationships
with each other, or they may occur separately. b, Model performance on peripheral
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green outer and red inner boundaries represent the upper and lower bounds of the
95% confidence interval, respectively. All radar plots display class-wise performance
on specific metrics, with the last radar plot representing the average performance on
all evaluated metrics.

24



Table 1: Model class-wise performance on the evaluation metric of F1 Score.

Model NoPS PS NoMRL TFO DCA PCA MA

DeiT 92.9080±0.0220 84.9378±0.0465 65.8115±0.1929 93.1385±0.0216 64.9436±0.1112 64.0049±0.1537 59.4071±0.3663
ConvNeXt 93.4954±0.0216 86.6145±0.0443 67.4836±0.1821 93.3462±0.0205 69.4887±0.1009 69.1593±0.1467 70.0695±0.3148
EfficientNet 93.3104±0.0220 86.3812±0.0440 67.8674±0.1824 93.4917±0.0202 68.5025±0.1026 74.8105±0.1361 71.4768±0.3003

Swin Transformer 93.2645±0.0213 85.9297±0.0436 64.8995±0.2008 93.6117±0.0207 69.4373±0.1047 67.9535±0.1534 69.7311±0.3287
RealMNet(Ours) 93.7815±0.0208 86.6268±0.0427 68.8711±0.1658 93.5031±0.0209 71.4770±0.0929 72.1523±0.1373 66.7895±0.3134

RealMNet-Max(Ours) 93.8404±0.0204 86.2816±0.0427 70.5547±0.1658 93.5852±0.0206 71.8504±0.0909 72.2685±0.1367 69.5145±0.3117

Table 2: Model class-wise performance on the evaluation metric of mAP.

Model NoPS PS NoMRL TFO DCA PCA MA

DeiT 92.9080±0.0220 84.9378±0.0465 65.8115±0.1929 93.1385±0.0216 64.9436±0.1112 64.0049±0.1537 59.4071±0.3663
ConvNeXt 93.4954±0.0216 86.6145±0.0443 67.4836±0.1821 93.3462±0.0205 69.4887±0.1009 69.1593±0.1467 70.0695±0.3148
EfficientNet 93.3104±0.0220 86.3812±0.0440 67.8674±0.1824 93.4917±0.0202 68.5025±0.1026 74.8105±0.1361 71.4768±0.3003

Swin Transformer 93.2645±0.0213 85.9297±0.0436 64.8995±0.2008 93.6117±0.0207 69.4373±0.1047 67.9535±0.1534 69.7311±0.3287
RealMNet(Ours) 98.7762±0.0063 93.3474±0.0390 76.8974±0.1809 98.7188±0.0071 76.2035±0.1202 74.0739±0.1749 69.8559±0.4057

RealMNet-Max(Ours) 98.7822±0.0063 93.0462±0.0432 78.0920±0.1822 98.7352±0.0072 75.7264±0.1222 76.1924±0.1705 74.2466±0.3623

Table 3: Model class-wise performance on the evaluation metric of AUROC.

Model NoPS PS NoMRL TFO DCA PCA MA

DeiT 92.9080±0.0220 84.9378±0.0465 65.8115±0.1929 93.1385±0.0216 64.9436±0.1112 64.0049±0.1537 59.4071±0.3663
ConvNeXt 93.4954±0.0216 86.6145±0.0443 67.4836±0.1821 93.3462±0.0205 69.4887±0.1009 69.1593±0.1467 70.0695±0.3148
EfficientNet 93.3104±0.0220 86.3812±0.0440 67.8674±0.1824 93.4917±0.0202 68.5025±0.1026 74.8105±0.1361 71.4768±0.3003

Swin Transformer 93.2645±0.0213 85.9297±0.0436 64.8995±0.2008 93.6117±0.0207 69.4373±0.1047 67.9535±0.1534 69.7311±0.3287
RealMNet(Ours) 97.1399±0.0139 97.1671±0.0139 98.3832±0.0145 96.3504±0.0170 95.8280±0.0194 97.5641±0.0199 99.1062±0.0160

RealMNet-Max(Ours) 97.1369±0.0140 97.1838±0.0140 98.5153±0.0140 96.4073±0.0170 95.9304±0.0186 98.0075±0.0164 98.9830±0.0248
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Table 4: Model information.

Model Architecture Implementation Scale Image Size #Params(M) FLOPs(G)

DeiT Transformer Distillation Base 384 87.63 55.65
ConvNeXt ConvNet Hierarchy Tiny 384 28.59 13.14
EfficientNet ConvNet Scaling B4 380 19.34 4.66

Swin Transformer Transformer Hierarchy Base 384 87.90 44.49

RealMNet
(Ours)

Hybrid
Hierarchy

Pretraining Distillation
21M 384 21.23 13.85

RealMNet
(Ours)

Hybrid
Hierarchy

Pretraining Distillation
21M 512 21.27 27.15

Table 5: Data overview of the centralized inference protocol (CIP).

Protocol
Training set Development set Testing set

Patients Images Patients Images Patients Images

CIP 3,192 (r. 3,138) 30,420 (r. 24,683) 684 6,377 684 6,574

The numbers with prefix r. mean resampling results.

Table 6: Data overview of the main-source robustness protocol (MRP).

Protocol
Training set Testing set

Subset Patients Images Subset Patients Images

MRP ShenzhenEye 4,003 (r. 3,944) 38,922 (r. 31,575)

SUSTech 226 2,835
LishuiR 155 938

Zhongshan 85 456
LishuiZ 91 220

The numbers with prefix r. mean resampling results.

Table 7: Data overview of the cyclic-source generalizability protocol (CGP).

Protocol
Training set Testing set

Subset Patients Images Subset Patients Images

CGP

PSMM (w/o SUSTech) 4,334 (r. 4,256) 40,536 (r. 32,888) SUSTech 226 2,835
PSMM (w/o LishuiR) 4,405 (r. 4,330) 42,433 (r. 34,408) LishuiR 155 938

PSMM (w/o Zhongshan) 4,475 (r. 4,398) 42,915 (r. 34,871) Zhongshan 85 456
PSMM (w/o LishuiZ) 4,469 (r. 4,389) 43,151 (r. 35,009) LishuiZ 91 220

The numbers with prefix r. mean resampling results.
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Appendix A Extended Data696

a

b

UWF CFP

NoPS PS NoMRL

TFO DCA PCA MA

Fig. A1: Illustration of ultra-widefield imaging and lesion types on the
PSMM dataset. a, Retinal field of view comparison between ultra-widefield (UWF)
imaging and color fundus photography (CFP). We present UWF and CFP images from
the same patient to illustrate the expanded field of view provided by UWF imaging. b,
Lesion regions of posterior staphyloma and myopic maculopathy. We show the presence
of posterior staphyloma (NoPS or PS) and five categories of myopic maculopathy: no
myopic retinal lesions (NoMRL), tessellated fundus only (TFO), diffuse chorioretinal
atrophy (DCA), patchy chorioretinal atrophy (PCA), and macular atrophy (MA).

We introduce the seven categories of posterior staphyloma and myopic maculopa-697

thy annotated in the PSMM dataset, along with their corresponding lesion regions of698

clinical interest. Different types of lesions require different areas of concern, making699

accurate segmentation challenging and posing a subsequent challenge for further work.700

It can be observed that the data collected are mainly concentrated on young adults701

requiring timely diagnosis and treatment. Data on younger and older patients have702

also been collected to provide a more comprehensive perception. While some datasets703

often collect data that are balanced in terms of age and gender, we prioritize gathering704

real-world data to support the development of models that can handle imbalanced705
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Fig. A2: Statistics of age and gender of the ShenzhenEye subset. The his-
togram presents the number of males and females within each ten-year age interval,
while the box plot illustrates the distribution of ages.

data. Although this approach may lead to lower model performance, it is essential to706

have the courage to confront these challenges.707
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Fig. A3: Architecture details of RealMNet. RealMNet harnesses the TinyViT as
the feature extraction backbone. The process of pretraining distillation is explained,
and the resulting distilled student model is employed for fine-tuning to tackle the
challenge of identifying posterior staphyloma and myopic maculopathy.

Resampling methods are essential for addressing the imbalance issue in multi-label708

datasets (MLDs). Researchers have developed various algorithms to tackle different709

MLDs and minimize the potential adverse effects of imbalanced data distributions.710

In this study, we examine six widely adopted approaches (Fig. A5a). LP-ROS (Label711

Powerset Random Over Sampling) [42] is a method that oversamples multi-label712

datasets by cloning random samples of minority label sets until the dataset is r%713

larger than the original. LP-RUS (Label Powerset Random UnderSampling) [42] is a714
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Fig. A4: Researching the advancement of cost-sensitive calibration and classifier adap-
tation. a, We entail an exploration of asymmetric probability shifting and asymmetric
focusing, with a search for the probability margin m. In the illustrated results, the
gray lines denote the negative focusing parameter γ− = 2, while the other colored
lines represent γ− = 4. b, We progressively examine the leveraging parameter λ and
the quantity of residual attention head. The determined choice is highlighted with a
red star, accompanied by a horizontal line to facilitate comparison.
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Fig. A5: Comparing model performance using various resampling methods,
input resolutions, and drop path rates. a, Investigating the resampling methods.
We resample the training set using multiple resampling methods: LP-ROS, LP-RUS,
ML-ROS, ML-RUS, REMEDIAL, and REMEDIAL-HwR. We explore these methods
with various resampling ratios denoted as r. b, Investigating the resolutions of input
images. We assess common resolutions of 224, 384, and 512 using a development set.
c, We set a maximum drop path rate of 0.5 with an increment of 0.1 to observe the
impact of different drop path rates. The determined choice is highlighted with a red
star, accompanied by a horizontal line to facilitate comparison.
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method that undersamples multi-label datasets by deleting random samples of major-715

ity label sets until the dataset is reduced to (1-r%) of its original size. LP-ROS and716

LP-RUS evaluate the frequency of complete label sets during preprocessing. ML-ROS717

(Multi-Label Random Over Sampling) [41] identifies samples with minority labels and718

clones them, while ML-RUS (Multi-Label Random Under Sampling) [41] identifies719

samples with majority labels and deletes them. ML-ROS and ML-RUS evaluate the720

frequency of individual labels, isolating samples in which one or more minority labels721

appear. REMEDIAL (REsampling MultilabEl datasets by Decoupling highly ImbAl-722

anced Labels) [43] is an algorithm that edits and oversamples by decoupling frequent723

and rare classes appearing in the same sample and adding new samples to the original724

dataset.725

Let N be the sample number of a multi-label dataset, L the full set of labels, λ the726

label being analyzed, and yi the label set of i-th sample. We use the LRlbl (Imbalance727

Ratio per Label) measure that is calculated individually for each label:728

IRLbl (λ) =
max
λ′∈L

(

∑N
i=1 [[λ

′ ∈ yi]]
)

∑N
i=1 [[λ ∈ yi]]

where the symbol [[]] denotes the Iverson bracket, which returns 1 if the expression729

inside it is true or 0 otherwise. The higher the IRLbl, the larger would be the imbalance,730

which helps identify minority or majority labels. Then, we calculate the MeanIR (Mean731

Imbalance Ratio) measure by averaging IRLbl to estimate the global imbalance level:732

MeanIR =
1

L

∑

λ∈L

IRLbl (λ)

The REMEDIAL algorithm is calculated relying on the SCUMBLE (Score of Con-733

cUrrence among iMBalanced LabEls) measure that aims to quantify the imbalance734

variance among the labels present in each data sample. SCUMBLE is based on the735

Atkinson index and the IRLbl measure. The SCUMBLE value of each sample in a736

multi-label dataset D is calculated as follows:737

SCUMBLEsample (s) = 1−
1

IRLbls

(

L
∏

λ=1

IRLbls (λ)

)(1/L)

where IRLbls (λ) = IRLbl (λ) if the label λ is present in the sample s, otherwise 0.738

IRLbls stands for the average imbalance level of the labels appearing in sample s. We739

average all scores of samples to obtain the final SCUMBLE value:740

SCUMBLEdataset (D) =
1

L

L
∑

λ=1

SCUMBLEsample (λ)
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We also harness the SCUMBLELbl to leverage the difficulty of labels:741

SCUMBLELbl (λ) =

∑N
i=1 [[λ ∈ yi]] · SCUMBLEsample (s)

∑N
i=1 [[λ ∈ yi]]

Based on our evaluation, ML-ROS and ML-RUS outperform LP-ROS and LP-RUS742

in terms of mAP and AUROC, despite having similar F1 Score results. Therefore,743

we investigate the performance of ML-ROS and ML-RUS with more compact resam-744

pling ratios. Our findings indicate that ML-RUS surpasses ML-ROS in both mAP745

and AUROC, while also exhibiting lower Hamming Loss, Ranking Loss, and Cover-746

age. We also observe that both the REMEDIAL algorithm and its adapted version,747

REMEDIAL-HwR, do not yield better performance. This confirms that REMEDIAL748

performs poorly on multi-label datasets with a low SCUMBLE level, which in our case749

is 0.0741. As a result, we opt for the ML-RUS algorithm with a resampling ratio of750

r = 20, as it consistently excels across all evaluation metrics.751

The choice of resolution directly impacts the quality of features the model can752

learn. Most neural networks use resolutions like 224, 256, and 384. We test different753

resolutions on a development set to see how they affect model performance (Fig. A5b).754

Our backbone is designed to work with a resolution of 512, which is larger than typi-755

cal backbones. When we fine-tune the model using higher resolutions, we increase the756

window size of each self-attention layer to match the input resolution. Our results show757

that higher resolutions lead to more accurate results, but they require more training758

time and computational resources. After considering performance and resource require-759

ments, we choose 384 as our main resolution for model development. Ultimately, we760

also scale up the resolution to 512 to demonstrate model capability.761

Drop path [27] is a critical regularization technique that involves randomly drop-762

ping entire neural paths to prevent model over-fitting. Since the size of the collected763

dataset is still relatively small compared to those in computer vision, this technique764

plays a significant role in constraining the model to fit our tasks. Experimental results765

(Fig. A5c) show that using a higher drop path rate benefits the model by effectively766

preventing over-fitting. Therefore, we decide to use a drop path rate of 0.5 for the rest767

of the experiments in this study.768

Modern ultra-widefield imaging inevitably photos the boundaries of the physical769

devices along with the imaging targets, which occlude partial information. To assess770

whether these boundaries negatively affect the model’s inference capability, we intend771

to segment out these boundaries and re-train our model using data without them. We772

discover that nearly three-quarters of the images in the PSMM dataset have signifi-773

cant black borders, and the remaining images, while lacking black borders, still show774

considerable device boundary interference. We randomly sample 1% of the data from775

the two imaging types to construct a segmentation dataset. We select at the patient776

level to circumvent the information leakage emphasized in the stratified partitioning.777

We seek the expertise of professional physicians to annotate the dataset at the pixel778

level. The resulting segmentation dataset comprises 412 images, involving 303 images779

with black borders and 109 images without black borders. We divide the dataset into780
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Fig. A6: Investigating the impact of physical device boundaries and pre-
training on the model performance. a, Visualizing the results of boundary
segmentation. We present original images, segmented images, and segmented masks,
respectively. b, Comparing the performance of models trained on data with and with-
out boundary segmentation. c, Comparing the performance of models trained with
and without weights derived from large-scale natural image datasets (e.g., ImageNet-
21k).
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a training set, development set, and testing set in an 8:1:1 ratio. We employ ResNet-781

50 as the segmentation backbone and DeepLab-v3 as the segmentation model with782

weights trained on the PASCAL Visual Object Classes Challenge (PASCAL VOC)783

2012 dataset [44]. We utilize the SGD optimizer with a batch size of 4, a learning784

rate of 0.01, and a momentum of 0.9 for 2,000 epochs with early stopping. After fine-785

tuning, we harness the model to segment out the boundaries of the physical devices786

and re-train RealMNet with these images. Ultimately, we find that there is hardly787

any difference between the performance of models trained on data with and with-788

out boundary segmentation, which suggests that the model distinguishes instrumental789

regions and focuses the field of view within the boundaries of the physical devices.790

We demonstrate the effectiveness of pretraining by observing the advantages gained791

from distilling the pretraining of the backbone on large-scale natural image datasets,792

such as ImageNet-21k [45]. Training a model from scratch requires a large dataset793

and a significant amount of time. Pretraining allows for the transfer of knowledge to794

downstream tasks, improving performance and reducing the need to start training from795

scratch. It can also conserve computational resources by utilizing the already learned796

representations. We find that the performance of the model improves significantly797

when initialized with weights that encompass the abundant knowledge from the large-798

parametric model (in our case, CLIP-ViT-L/14-21k [46]), which demonstrates the799

superiority of utilizing the power of pertaining.800
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Table A1: Overview of the PSMM dataset and its subsets.

Dataset Source Patients UWF Images

PSMM Integrated 4,560 43,371

ShenzhenEye Main 4,003 38,922
SUSTech Auxiliary 226 2,835
LishuiR Auxiliary 155 938

Zhongshan Auxiliary 85 456
LishuiZ Auxiliary 91 220

Table A2: Imbalance levels of the PSMM dataset.

Measure NoPS PS NoMRL TFO DCA PCA MA

IRLbl 1.1145 2.0999 15.4234 1. 5.0833 11.5897 38.9930

SCUMBLELbl 0.0394 0.1393 0.4986 0.0124 0.0915 0.2853 0.5596
w/ REMEDIAL 0.0018 0.0606 0. 0.0124 0.0915 0. 0.

MeanIR 10.7577
SCUMBLE 0.0741 (w/ REMEDIAL 0.0174)

Table A3: Black border statistics for image data of the PSMM dataset
and its subsets.

Dataset PSMM ShenzhenEye SUSTech LishuiR Zhongshan LishuiZ

w/ Black Border 31,244 28,409 2,835 0 0 0
w/o Black Border 12,127 10,513 0 938 456 220
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Table A4: Boundary segmentation results.

Boundary Segmentation Accuracy mIoU

w/ Black Border 0.9813 0.9586
w/o Black Border 0.9796 0.9482

Table A5: Varying α for Cross-Entropy Loss (γ = 0).

α Precision Recall F1 Score mAP AUROC Hamming Loss↓ Ranking Loss↓ Coverage↓

.10 0.9071 0.6071 0.7105 0.8778 0.9766 0.0659 0.0255 2.2233

.25 0.8720 0.7325 0.7922 0.8783 0.9774 0.0554 0.0249 2.2145

.50 0.8309 0.8031 0.8158 0.8794 0.9781 0.0541 0.025 2.2156

.75 0.7805 0.8716 0.8229 0.8787 0.9782 0.0575 0.0253 2.2148

.90 0.7163 0.9347 0.8082 0.8781 0.9783 0.0709 0.0247 2.2108

.99 0.5193 0.9914 0.6569 0.8492 0.9747 0.1389 0.0254 2.2194
.999 0.3981 0.9961 0.5186 0.7532 0.9607 0.2545 0.0314 2.2614

Table A6: Varying γ for Focal Loss (with optimal α).

γ α Precision Recall F1 Score mAP AUROC Hamming Loss↓ Ranking Loss↓ Coverage↓

0 .75 0.7805 0.8716 0.8229 0.8787 0.9782 0.0575 0.0253 2.2148
0.1 .75 0.7822 0.8693 0.8230 0.8764 0.9787 0.0571 0.0251 2.2134
0.2 .75 0.7826 0.8688 0.8230 0.8779 0.9788 0.0569 0.0248 2.2109
0.5 .50 0.8296 0.7981 0.8122 0.8774 0.9786 0.0537 0.0249 2.2133
1.0 .25 0.8628 0.7207 0.7806 0.8747 0.9774 0.0566 0.0252 2.2156
2.0 .25 0.8660 0.7180 0.7802 0.8768 0.9783 0.0564 0.0251 2.2142
5.0 .25 0.8695 0.7097 0.7760 0.8791 0.9790 0.0572 0.0253 2.2155

Table A7: Varying TP and TN for Two-way Loss.

TP TN Precision Recall F1 Score mAP AUROC Hamming Loss↓ Ranking Loss↓ Coverage↓

0.5 0.5 0.7493 0.8883 0.8124 0.8803 0.9774 0.0668 0.0261 2.2241
0.5 1 0.7095 0.922 0.8006 0.8821 0.978 0.0773 0.0254 2.2153
0.5 2 0.6787 0.9453 0.7871 0.8837 0.9788 0.0878 0.0246 2.2075
0.5 4 0.6531 0.9591 0.77 0.8851 0.9785 0.0948 0.0246 2.2075

1 0.5 0.7729 0.8694 0.8178 0.8736 0.9764 0.0607 0.0262 2.2272
1 1 0.7244 0.9072 0.804 0.8771 0.9772 0.0699 0.025 2.2159
1 2 0.6938 0.9388 0.7949 0.8812 0.9783 0.0797 0.0241 2.2073
1 4 0.6548 0.9571 0.7704 0.8802 0.9781 0.0918 0.0245 2.2101

2 0.5 0.798 0.837 0.8162 0.8699 0.9752 0.0568 0.0261 2.2288
2 1 0.7536 0.8835 0.8123 0.8734 0.9769 0.0629 0.025 2.2186
2 2 0.714 0.9226 0.8025 0.8761 0.9777 0.0712 0.0243 2.2103
2 4 0.6691 0.9532 0.7778 0.8771 0.9781 0.0817 0.0238 2.2043

4 0.5 0.8294 0.7918 0.806 0.8675 0.9745 0.0557 0.0263 2.2293
4 1 0.8017 0.8371 0.8164 0.8702 0.9761 0.0578 0.0259 2.2241
4 2 0.7475 0.885 0.809 0.8708 0.9763 0.0639 0.0252 2.2161
4 4 0.6853 0.9424 0.7852 0.8688 0.9759 0.073 0.025 2.2117
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