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The vast majority of people who suffer unexpected cardiac arrest are performed cardiopulmonary resuscitation
(CPR) by passersby in a desperate attempt to restore life, but endeavors turn out to be fruitless on account
of disqualification. Fortunately, many pieces of research manifest that disciplined training will help to elevate
the success rate of resuscitation, which constantly desires a seamless combination of novel techniques to
yield further advancement. To this end, we collect a specialized CPR video dataset in which trainees make
efforts to behave resuscitation on mannequins independently in adherence to approved guidelines, promoting
an auxiliary toolbox to assist supervision and rectification of intermediate potential issues via modern deep
learning methodologies. Our research empirically views this problem as a temporal action segmentation (TAS)
task in computer vision, which aims to segment an untrimmed video at a frame-wise level. Here, we propose a
Prompt-enhanced hierarchical Transformer (PhiTrans) that integrates three indispensable modules, including
a textual prompt-based Video Features Extractor (VFE), a transformer-based Action Segmentation Executor
(ASE), and a regression-based Prediction Refinement Calibrator (PRC). The backbone preferentially derives
from applications in three approved public datasets (GTEA, 50Salads, and Breakfast) collected for TAS tasks,
which experimentally facilitates the model excavation on the CPR dataset. In general, we probe into a feasible
pipeline that elevates the CPR instruction qualification via action segmentation equipped with novel deep
learning techniques. Associated experiments on the CPR dataset advocate our resolution with surpassing 91.0%
on Accuracy, Edit score, and F1 score.

1. Introduction deploying CPR against OHCA, survival remains dismally low. There

are indications that CPR performance influences the outcome [6,7].

Out-of-hospital cardiac arrest (OHCA) is a universal public health From this perspective, a great deal of research [8-10] seeks and proves

issue undergone by about 3.8 million people annually, with only 8% to
12% surviving hospital discharge [1]. Characterized as blood flow or
breathing stops, OHCA induces permanent brain damage or death hap-
pens acutely. Performing cardiopulmonary resuscitation (CPR) could

the positive effects of CPR instruction. Besides, the increasing number
of people suffering OHCA worldwide makes intensive CPR education
even more imperative. To enable CPR education as a mandatory part

serve as an emergency procedure for OHCA, which maintains the
blood flow and breathing until advanced medical help arrives [2].
There has been a large volume of research and practice for decades to
investigate CPR [3-5]. In 1891, the first chest compression on a human
being were performed by Friedrich Maass [4]. The first guidelines for
CPR were released about 50 years ago [3]. Despite a long history of

of society, not only should we cultivate the awareness of social respon-
sibility, but employ more comprehensive approaches [8]. Specifically,
traditional assessment of CPR skills involves strenuous manual efforts,
which lacks efficiency and repeatability [8,9]. Extensive attempts to
revive those who sustain OHCA will be probably further improved
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with the combination of promising novel computer techniques and
widespread application.

One most relevant specific research [11] emerges by collecting a
dataset of real-world instruction videos from the Internet, containing
performing CPR and four non-medical tasks. However, the work intends
to address the problem of automatically learning the main steps to com-
plete a certain task, neither implemented particularly for formal CPR
behaviors nor designed for CPR instruction. Given the aforementioned
dataset, several subsequent works focus on action segmentation in an
unsupervised [12] or weakly supervised way [13] without proposing
concrete challenges pertaining to CPR instruction. The positive impacts
of CPR action segmentation are not clearly defined yet. Therefore, we
evoke one ensuing challenge: How better could we elevate CPR instruction
with action segmentation?

To this end, we resort to investigating a specific realm called
temporal action segmentation (TAS), which has gradually developed
into one of the high-profile research spotlights in computer vision. Ex-
tensive researches [14-17] on medical image segmentation have been
conducted in recent years. Compared with these image segmentation
tasks, the universal goal of the TAS task is to identify activities in
untrimmed videos at a frame-wise level. It has promoted a wealth
of applications in human behavior analysis from video summariza-
tion [18], video surveillance [19], action recognition [20,21], to skill
assessment [22]. With prosperous computing power reinforcement,
understanding single-semantics short video clips has been gradually
outmoded in the TAS task in favor of larger, more complex untrimmed
videos [23,24], which requires both intrinsic and extrinsic correlations
of actions. Conventional segmentation methods [25] like Temporal
Convolutional Networks (TCNs) consider single frames or short video
segments for feature representation. They overlook the latent relation-
ship among contextual actions, leading to poor performance, especially
in long videos. Accordingly, some studies [26,27] exploit Recurrent
Neural Networks (RNNs) to model each action clip to maintain local
dependencies but still struggle to handle longer videos effectively due
to the inherent spatio-temporal complexity of RNN. To equip the model
with relational reasoning, methods utilizing Graph Convolutional Net-
works (GCNs) regard each action as a single node on the graph and
edges represent the contextual relationship [28,29]. However, these
preceding works all adopt frame-wise features extracted by pre-trained
I3D [30] network, which might not be adequate enough to excavate
effective representations of videos. In the past few years, it can be
witnessed that both transformer-based [31,32] and prompt-based ar-
chitectures [33,34] have flourished in artificial intelligence, which
tremendously lightens our research on addressing deficiencies of pre-
ceding methods. Particularly in visual applications, Transformer-based
architectures hold the potential to integrate the information between
sequential elements that are far from each other with powerful scal-
ability. Prompt-based architectures could enhance the visual features
with representative linguistic semantics.

Now we attempt to yield a feasible resolution for the proposed
challenge: Firstly, a specialized dataset dedicated solely to CPR actions
is crucial. However, existing action segmentation datasets only contain
limited videos with CPR actions. Moreover, the quality of these videos
varies, and the associated annotations are not comprehensive nor pro-
fessional. To bridge this gap, we preliminarily establish a specialized
CPR dataset involving videos of participants performing the whole
process of CPR in a standard green screen laboratory environment.
These videos contain 15 CPR categories and are labeled at a frame
level by experienced trainers. After that, we devise a crafted archi-
tecture to perform action segmentation. Specifically, we propose a
Prompt-enhanced hierarchical Transformer (PhiTrans) that integrates
three integral modules: (1) a textual prompt-based Video Features
Extractor (VFE) module that extracts abundant frame-wise features;
(2) a transformer-based Action Segmentation Executor (ASE) module
that deduces the contextual relationship while adaptive to long frame
sequences; (3) a regression-based Prediction Refinement Calibrator
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(PRC) module that further alleviates the over-segmentation issues high-
lighted in the TAS task. Finally, we observe the model performance
on the custom CPR dataset and claim that it can serve as an auxiliary
toolbox applied in action segmentation for assisting CPR instruction
by automatically identifying potential omission, repetition, or out-of-
order situations at a frame-wise level, allowing trainees to rectify the
workflow free of experts.
Our main contributions are chronologically three-fold:

» We reveal and fill the gap of lacking a specialized CPR dataset
adequate for action segmentation. The collected CPR dataset
contains videos of the entire cardiopulmonary resuscitation eval-
uation and associated frame-level semantic annotations.

We propose an integrated model, called PhiTrans, especially ap-
plied for CPR action segmentation, including three integral mod-
ules: Video Features Extractor, Action Segmentation Executor,
and Prediction Refinement Calibrator.

To the best of our knowledge, we unprecedentedly probe into a
feasible pipeline that genuinely elevates the CPR instruction qual-
ification via action segmentation in conjunction with cutting-edge
deep learning techniques.

2. Related work
2.1. Temporal action segmentation

Temporal action segmentation (TAS), one of the most challeng-
ing topics in advanced video comprehension, aims to extract frame-
wise features from untrimmed videos and categorize them chronolog-
ically with pre-defined action labels. Action localization, video sum-
marization, and other downstream applications benefit from products
of the TAS task as input. Over the past decade, a multitude of meth-
ods [25,35-38] have leveraged models for action prediction with the
extracted frame-wise features. Traditional paradigms involve sliding
windows with non-maximum suppression [35], Hidden Markov Models
(HMM) [36], Linear Dynamical Systems (LDS) [37], and Bayesian
Non-parametric Models (BNM) [25].

These methods encounter common obstacles to modeling long-range
dependencies. To alleviate this issue, RNNs [27] and TCNs [38] are de-
ployed to capture global dependencies and the contextual information
of adjacent frames. After that, Multi-Stage Temporal Convolutional Net-
work (MS-TCN) [24] combines TCNs with multi-stage patterns to make
remarkable progress in the TAS task, wherein plural stages are stacked
to refine the predictions from the preceding output successively. In
addition, other methods aim to model the TAS task from a unique per-
spective. Self-Supervised Temporal Domain Adaptation (SSTDA) [39]
trains with two auxiliary tasks of binary and sequential domain predic-
tion. Dilated Temporal Graph Reasoning Module (DTGRM) [28] builds
multi-level dilated temporal graphs to simulate temporal dependencies
between video frames at different timescales. Unified Video Action
Segmentation model via Transformers (UVAST) [40] presents a unified
design for fully and timestamp supervised temporal action segmenta-
tion via Transformers in a seq2seq style. Action Shared-Private network
(ASPnet) [41] fuses multiple data sources and captures long-range
temporal dynamics in sequential data. These especial methods lose
portability on account of complex task patterns. Considering the spatio-
temporal complexity of CPR action segmentation and accessibility for
downstream design, we follow the same philosophy of multi-stages in
previous methods [24,42] for iterative refinement.

2.2. Transformer-based architecture

Initially designed for Natural Language Processing (NLP) related
tasks, Transformer [31] has motivated a tremendous leap forward in ca-
pabilities for pre-training on larger datasets and fine-tuning on smaller
task-specific datasets with computational efficiency and scalability. The
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visual application [32] of Transformer constantly challenges the dom-
inant status of Convolutional Neural Networks (CNNs). Vision Trans-
formers require less vision-specific inductive bias and maintain more
global information relying on the Multi-head Self-Attention (MSA).

Witnessed the success of Transformer in image classification, image
segmentation, and other vision tasks, one study [43] explores the
transfer implementation of Transformer on the TAS task. The work
presents major concerns underwent and accordingly proposes local
connectivity inductive bias and hierarchical representation pattern,
allowing vanilla Transformer scale to the TAS task. Such adaptions
produce a hybrid Transformer architecture with temporal convolution
included, which leads to fine-grained loss between adjacent frames as
the depth layers increase. Most recently, follow-up works tend to im-
prove this issue in two ways: establish a pure Transformer model [44]
or refine temporal convolutions [45]. Although these efforts seem
favorable, the robustness remains to be verified due to the lack of open
sources. Therefore, our approach preserves the backbone and excavates
promising performance with extensive optimization. Particularly, con-
sidering the resemblance among CPR actions, we enjoy a specific action
segmentation refinement framework [46], laying the foundation for our
endeavors to alleviate over-segmentation errors highlighted in the TAS
task.

2.3. Prompt-based learning

Served as an evolutionary group of Machine Learning (ML) model
training approaches, prompt-based learning preliminarily allows people
linguistically specify a certain task for the pre-trained Large Language
Model (LLM) to compile and complete [33]. To present a more intuitive
perception of prompt-based learning, this section primarily introduces
the identification of prompt and prompt engineering. Essentially, a
prompt is an instruction depicted in natural language for the model
to execute. The procedure of building the ideal prompt for a specific
task is called prompt engineering. Subsequently, prompt-based learning
involves training a language model on the converted prompt-based
dataset. The essence of prompt-based learning is to modify the input
into prompts and embed the anticipated output as unfilled blanks
within the prompt.

To investigate the effects of prompt-based design in visual applica-
tions, models like CLIP [34] and ALIGN [47] have achieved remarkable
performance on image recognition tasks. They formulate the objec-
tives as descriptive texts and transit the classification problem into
video-text matching. Besides, ActionCLIP [48] proposes a prompt-based
paradigm specific to action recognition tasks, aiming to recognize single
actions in short video clips. These methods demonstrate the potential
of prompt-based learning to motivate the development of visual tasks
with multi-modal feature representation.

To this end, we attempt to rethink the effectiveness of frame-wise
feature extraction in the TAS task, for which previous action seg-
mentation methods uniformly utilize the pre-trained I3D [30] model.
Although the I3D-based features maintain advantageous capacity due to
integrating information from the RGB stream and optical-flow stream,
they might not be sufficient to construct representative embeddings ex-
periencing complex scenarios, particularly for CPR actions. One closely
related work [49] that arose recently, called Br-Prompt, is of significant
importance for instructing the feature extraction model equipped with
a prompt-based paradigm. On top of that, our approach extends more
details elaborated for effective feature extraction of CPR actions in
favor of downstream tasks.

3. Methods
In this section, we introduce the proposed Prompt-enhanced hier-

archical Transformer (PhiTrans) with clear motivation and objective.
Then we distill its integral modules.
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3.1. Overall pipeline

As declared in Section 1, our motivation is to investigate how better
could we elevate CPR instruction with action segmentation, which nails
down our objective of devising an exact architecture for CPR action
segmentation to excavate its positive effects on CPR instruction.

The overall pipeline of our approach is illustrated in Fig. 1. We first
apply Video Features Extractor (VFE) to extract frame-wise features
representing potentially involved CPR actions and transition semantics.
After that, Action Segmentation Executor (ASE) generates an initial pre-
diction for the input video, explicitly identifying ordinal CPR actions.
Finally, to effectively alleviate over-segmentation issues that might give
rise to the misclassification of CPR actions, we adopt Prediction Refine-
ment Calibrator (PRC) to refine the performance, thereby producing a
final assessment enclosing less boundary ambiguity.

We argue that the aforementioned modules are indispensable, sep-
arately playing distinct roles and ultimately bringing down-to-earth
performance to the intact model. To support our claims, more module
details and corresponding impacts are described below.

3.2. Video Features Extractor

The Video Features Extractor (VFE) module is responsible for ex-
tracting discriminative frame-wise features of CPR videos, which sub-
sequently become the input of the action segmentation module. As
demonstrated at the bottom of Fig. 1, raw video frames are primarily
sampled into neat clips with fixed lengths for local recognition and
training efficiency. On top of retaining pre-established semantics by
prompt engineering, the VFE module implements visual-linguistic con-
trastive learning to fuse multi-modal knowledge. Ternary Transformer
encoders unify the framework and the synchronous training finally
empowers the vision Transformer encoder to produce representative
frame-wise features for input videos. The module is inspired by previ-
ous methods [48,49], and is adapted to facilitate the feature extraction
of CPR actions with more experimental analysis.

3.2.1. Sampling strategy

To unify the inputs and mitigate the footprint burden, we implement
a sampling strategy for the raw CPR videos to generate a series of video
clips. Specifically, a frame-wise sliding window approach is carried out
with the downsampling rate (ds) of frames in each window and the
overlapping rate (o/) between windows. The configuration of ds and o/
will be illuminated in Section 5.4. The sampling strategy allows the VFE
module to concentrate on local dependencies with a fixed video length.
Each generated video clip involves one or multiple CPR actions, leading
to diverse receptive fields to feature extraction with training efficiency.
Moreover, this strategy is vital for augmenting data and empowers the
robustness of the VFE module.

3.2.2. Prompt engineering

In order to acquire informative semantic merits for a CPR video clip,
prompt engineering resorts to the idea of embedding the expected out-
put string into the input template in a cloze test-like form. We simulate
the implementation inspired by Br-Prompt that is non-discriminatorily
applied to TAS tasks. In particular, we establish 15 advantageous
semantics for the CPR actions appeared in the custom dataset. There-
fore, four types of prompts are available to record properties of CPR
behaviors such as location, quantity, semantics, and integrality. More
specifically, The ordinal prompt z;r , adopts the format as “this is the
{ith} action in the video” to simply captures the position of each state.
The statistical prompt z, counts the number of CPR actions of a
sequence with a neat format as “this video clip contains {number of
CPR behaviors} actions in total”. To investigate pronounced semantic
analysis, we utilize the format “{ith}, the person is performing the action

step of {a certain CPR behavior}” as the semantic prompt z!, focusing
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Action Segmentation Executor
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Fig. 1. Overview of PhiTrans pipeline for cardiopulmonary resuscitation action segmentation. The VFE module at the bottom plays a role in generating frame-wise features,
which will serve as the input to the top left ASE module to achieve the initial predictions. The PRC module in the top right further implements calibration to yield the eventual
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in the VFE module are three elaborate contrastive learning losses. Vision Trans. Encoder, Text Trans. Encoder, and Fusion Trans. Module are

synchronously trained. Diverse colors in the PRC module represent action categories, and their length indicates the duration of the corresponding action.

on adjacence and interspersion of actions. Eventually, we regard aggre-
gated semantic prompts in a CPR video clip as the integrated prompt
Zineq» Tepresenting global semantic information. The motivation of
prompt engineering aims to learn inter- and intra- affinities of behaviors
within CPR videos.

3.2.3. Visual-linguistic contrastive learning

Given massive prompts by the prompt engineering, the VFE module
ponders fabulous representation of the CPR video clips through visual-
linguistic contrastive learning. To be legible, video clip ¢ and its text
description ¢ are introduced to a visual encoder and a text encoder to
obtain the corresponding representation z, and z,, respectively, and the
cosine similarity between the two is expressed as:
z, - z,
1z.112]
The batch similarity matrix S for the video clip feature Z, and the text
feature Z, with batch size B is:

@

S(zc’ zt) =

s(zcl,z,l) s(zcl,z,B)
S(Z..Z)= : : @

5(Zeyo2) v S(ZepsZpy)

We define the ground-truth batch similarity matrix GT, where the
similarity of the correct pair is set to 1, and contrastively the error
pair is set to 0. The objective of learning is to maximize the similarity
between S and GT.

Here we adopt the KL divergence (Kullback-Leibler divergence) as
the contrastive loss. For instance, N X N matrices P and Q, its brief
form is defined:

1 By
Dy (Pl Q)= — Fyjlog —= 3
NS ; ! 9y

.

In this way, given dual modal similarity matrix S, and S;, we
leverage the visual-linguistic contrastive loss as:

L= %[DKL(SC”GT) + Dg(STlIGT)] “

To explain comprehensive details while avoiding ambiguous per-
plexity, we first employ a semantic loss £, , in which visual features
z! involving ordinal contents of the video clip contend against com-
mensurate textual semantic representation z:, , thereby maintaining
substantial semantic concernments. Meanwhile, the average pooling
video clip features z, containing ordinal collections compete with
integrated prompts representation z;,,, via the integrated loss L,
to allow holistic demonstration. Furthermore, to transparently exert a
profound influence on the quantitative information, a statistical loss
L. is applied by way of contrasting average pooling enumeration
features z;cyr; with statistical prompts representation z,,,. We ablate
these loss components in Section 5.6.2.

Finally, the united loss of the model is manifested as:

K
L= Z Eiem + Einteg + cstat (5)
i=1
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3.3. Action Segmentation Executor

The Action Segmentation Executor (ASE) module takes frame-wise
features derived from the VFE module as input and produces moderate
CPR action segmentation predictions. The structure of the ASE module
is illustrated in the upper left of Fig. 1. Generally, the ensemble is a
hierarchical encoder—decoder architecture, wherein the output of the
encoder as initial predictions will flow in ternary decoders for distilla-
tion. At the same time, the ASE module attempts to acquire hierarchical
perception with window-perceptive self-attention and dilated temporal
convolution throughout the framework.

3.3.1. Hierarchical encoder-decoder

ASE module is composed of one encoder and three identical de-
coders. Each of them contains nine blocks to provide hierarchical
representation. After generating the initial prediction by the encoder,
three decoders perform a refinement process to boost the performance.
The input to the encoder is a sequence of pre-extracted frame-wise
features in sizes D x .S, where D refers to the feature dimension of each
frame and .S represents the total number of frames of the input video.
The first layer of the encoder uses a fully connected layer to adjust the
input feature dimension. Subsequently, each encoder block utilizes a
dilated temporal convolution as a feed-forward layer, which is followed
by a ReLU activation function and instance normalization, connecting
the single-head self-attention layer. A residual concatenation is taken
between the two layers, and then the output dimension is reshaped by
1 x 1 convolution to join the next encoder block. The final encoder
block outputs the initial prediction p, € RSXC by passing a fully
connected layer, where C represents the number of action categories.
Afterward, the decoder takes the initial prediction as input and is
arranged in accordance with the encoder as a whole, except for the
cross-attention layer. The cross-attention layer combines the results
from the encoder with the output from the previous layer, treating the
aggregation as the query Q and the key K, and the output from the
previous layer as the value V. The advantage of this manner is that the
frame-wise confidence scores from the encoder can be involved in the
refinement stage by generating attention weights, and these attention
weights are utilized for linear concatenation, without affecting the
feature space V itself. In the end, the model makes the best use of three
identical decoders to hierarchically produce the final prediction.

3.3.2. Hierarchical perception

Two hierarchical strategies are simultaneously adopted to scratch
multi-scale receptive fields by enlarging the window size of the self-
attention layer and dilated temporal convolution throughout the ASE
module. Considering videos in the CPR dataset tend to cover thou-
sands of frames, it is fairly demanding to seize significant vision plots
for the self-attention layer within each block of the encoder or the
decoders. We follow the spirit of hierarchical representation patterns
proposed in [43] to mitigate this issue. Concretely, such a strategy first
concentrates on the local semantics and then gradually enlarges the
receptive field to acquire the global concepts, allowing the model to
learn extrinsic-to-intrinsic knowledge of CPR actions displayed in the
videos. In addition, both apparent differences and subtle discrepancies
are taken into account, yielding a more specific fashion to the traits
of CPR actions. Practically, the window-perceptive self-attention layer
calculates attention weights with each particular frame within its local
window at a w scale, which is doubled as the blocks stack deeper
(i.e., w = 2/, i = 1,2,...). Similarly, to introduce constructive local
inductive bias, we follow the dilated temporal convolution as utilized
in the TAS task by expanding the kernel size consistent with the
self-attention layer.
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3.4. Prediction Refinement Calibrator

The Prediction Refinement Calibrator (PRC) module intends to re-
markably alleviate over-segmentation errors of the predictions from
the ASE module. The PRC module allies with and refines the ASE
module by duplicating the segmentation pipeline but replacing the
objective from action predictions with boundary probabilities. In par-
ticular, a comprehensive loss function serves as the motivation for
jointly training the ASE and PRC modules. The overall loss function
is a combination of the action segmentation loss and the boundary
regression loss, with correlative ablation conducted in Section 5.6.2. As
shown in the upper right of Fig. 1, the generated boundary probability
curves further calibrate the action predictions from the ASE module
with less over-segmentation issues and present the final CPR action
segmentation predictions.

3.4.1. Boundary probability calibration

To clarify the assets of the PRC module, we depict its intrinsic
concept for boundary probability calibration. During the inference
period, the PRC module regresses frame-wise action boundary possi-
bilities P € [0, 1]5. Subsequently, the action boundaries B € {0,1}°
are determined by electing multiple P, from P as the local maximum
and simultaneously fulfilling the exceeding condition of the threshold
p=05.

In practice, the ASE module primarily generates initial predictions
by assigning the action categories to the action segments with potential
over-segmentation issues. Then the calculated action boundaries B
compartmentalize the video clip into refined action segments, each of
which contains only one action both theoretically and practically. The
retained action categories by majority voting for each action segment
reach the final prediction of the entire model.

3.4.2. Action segmentation loss
The overall action segmentation loss is defined as:

1 *
Loy =5 X (Lo + Lono) (6)
g

More specifically, the classification loss L7, utilizes median fre-
quency balancing, where the action weights of each action category
in the temporal action segmentation task are calculated by dividing the
mean frequency of each action category by the frequency of each action
class. Concerning the smoothing loss L,,,, we implement Gaussian
Similarity-weighted Truncated Mean Squared Error (GS-TMSE), which
penalizes all frames in a video clip for the purpose of smoothing the
transition of action probabilities between frames while preventing them
from interfering with the frames where actions de facto transition. Its
concrete form is as follows:

1 llx, — x, 117
Les_TMSE = KTl ZCXP(_#)‘S?,c @
s,c

8, =min{|logp; . —logp,_; |, 7} (8)

where x, is the similarity index of the frame s, 6 denotes the variance
and is simply set to 1, and the threshold ¢ is set to 4. The advantageous
implementation benefits from the property of GS-TMSE. For brevity,
the Gaussian kernel based on the similarity of frames (frame-wise
features in our experiments), the function punishes contiguous but
discriminative frames with merely a small weight. We average the
losses of G stages (in our framework G = 4) as the overall action
segmentation loss.
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CPR Action Categories
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Semantic Information

1. Preparing to start

2. Confirming environment

3. Ensuring safety

4. Leaning down and patting

5. Judging patient breath

6. Declaring someone is sick

7. Indicating she/he has studied aid
8. Asking someone to help

9. Requesting someone to fetch AED
10. Requesting professional assistance
11. Pressing patient chest

12. Checking patient mouth

13. Performing artificial respiration
14. Assessing patient status

15. Ending rescue operation

Fig. 2. Visualization of 15 action categories recorded in the CPR dataset and their corresponding semantic information.

Table 1

Summary of datasets for model development and application.
Dataset Videos Classes Duration fps Instances View
50Salads 50 17 6.4 30 20 Top
Breakfast 1712 48 ~1 15 6 Third person
GTEA 28 11 ~1 15 20 Egocentric
CPR 99 15 2 15 17 Third person

3.4.3. Boundary regression loss
We employ a weighted logistic regression loss function to endow
our model with boundary-aware capacity, which is defined as:

S
Ly = e 2 X (10,3, ogp, + (1 = 3,) - log(1 = p,) ©
g s=I1

where y, and p, represent the ground-truth action boundary labels and
predicted action boundary possibilities for the frame s, respectively.
Since the number of action boundary frames is much smaller than that
of other frames, the factor w,, is kindly devised to samples with weight
positive. To further clarify w,, it comes from the reciprocal ratio of
positive data points over the entire training data.

4. Dataset

We primarily compare the performance of various models on three
challenging public datasets that are widely recognized in the TAS task
concentrating on catering behaviors, whereby the optimal architec-
ture will be established especially for CPR action segmentation. We
argue for the reasonability of selecting these three datasets on account
of analogous representation patterns compared to the CPR actions,
wherein the behaviors are globally invariant and locally distinct. More
importantly, we introduce the preprocesses of the custom CPR dataset
and explain its implication. The essential takeaway information for
these four datasets is summarized in Table 1.

4.1. Preliminary public datasets

50Salads dataset [50] is beneficial for research in action recogni-
tion, activity detection, process tracking, etc., which collects 50 videos
from 25 participants preparing two different kinds of mixed salads,
and contains more than 4 h of video data. Each video lasts 6.4 min
long on average and consists of about 20 action instances. All videos
are recorded from a top-down view, including 17 action category
annotations.

Breakfast dataset [51] is related to the preparation of daily break-
fast. It comprises 18 different kitchen scenes with diverse backgrounds

conducive to monitoring and analyzing daily human activities. The
dataset contains 1712 videos with 48 action annotations recorded from
a third-person view of 52 participants, wherein each video represents
an average of 6 action instances.

GTEA dataset [52] contains 28 egocentric videos with 11 action
categories involving daily kitchen activities performed by 4 partici-
pants. On average, each video has 20 action instances and is about a
half-minute long.

4.2. Custom CPR dataset

We collect the CPR dataset with ethical approval and notifica-
tion of subjects with the assistance of MIRAGESTARS Inc., which
involves 99 videos of participants performing the whole process of
cardiopulmonary resuscitation in a standard green screen laboratory
environment. This work is conducted in adherence to the tenets of the
Declaration of Helsinki, and ethics approval is obtained by the Ethics
Committee of the Shenzhen International Graduate School of Tsinghua
University Submission F111,/2022.

Each video has about two minutes duration on average, contain-
ingup to 15 action categories shown in Fig. 2 with their representative
frames and the corresponding semantic information. The raw videos
shot are identically transformed utilizing the stream processing tool
called FFmpeg. More concretely, the frame rate and resolution of videos
are decreased from 25 fps, 2k to 15 fps, 720 p respectively, on account
of alleviating the calculating burden of proposed models, while ensur-
ing the accessibility of the pipeline and the efficiency of the architecture
to the maximum extent. It is worth noting that the simplifications
above significantly reduce the video size from 320 MB-1.1 GB to
1.9 MB-5.3 MB, followed by wiping out the audio channel. These
transformations sufficiently consider that CPR action segmentation gen-
erally depends on integral gestures rather than pixel-wise identification,
whereby hardly any practical loss will be generated. After that, these
videos are labeled at a frame level by experienced trainers. The crafted
CPR dataset possesses diverse challenges, including but not limited
to the transience of partial actions, resemblance among actions, and
out-of-place actions.

The motivation of this dataset is prone to assist CPR instruction by
automatically identifying potential omission, repetition, or out-of-order
situations at a second-wise level, even if taking frame-wise misregis-
tration into consideration. Furthermore, we adopt to implement four-
fold nested cross validation to minimize latent optimistically biased
evaluation, thus fairly revealing the performance of the presented
model.
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Table 2
Action segmentation performance of various state-of-the-art (SOTA) models on GTEA, 50Salads datasets and Breakfast.
Dataset GTEA 50Salads Breakfast
Model F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc
MS-TCN [24] 85.8 83.4 69.8 79.0 76.3 76.3 74.0 64.5 67.9 80.7 52.6 48.1 37.9 61.7 66.3
DTGRM [28] 87.8 86.6 72.9 83.0 77.6 79.1 75.9 66.1 72.0 80.0 68.7 61.9 46.6 68.9 68.3
BCN [23] 88.5 87.1 77.3 84.4 79.8 82.3 81.3 74.0 74.3 84.4 68.7 65.5 55.0 66.2 70.4
MS-TCN++ [42] 88.8 85.7 76.0 83.5 80.1 80.7 78.5 70.1 74.3 83.7 64.1 58.6 45.9 65.6 67.6
ASRF [46] 89.4 87.8 79.8 83.7 77.3 84.9 83.5 77.3 79.3 84.5 74.3 68.9 56.1 72.4 67.6
SSTDA [39] 90.0 89.1 78.0 86.2 79.8 83.0 81.5 73.8 75.8 83.2 75.0 69.1 55.2 73.7 70.2
UVAST+alignment decoder [40] 77.1 69.7 54.2 90.5 62.2 86.2 81.2 70.4 83.9 79.5 76.7 70.0 56.6 77.2 68.2
ASFormer [43] 90.1 88.8 79.2 84.6 79.7 85.1 83.4 76.0 79.6 85.6 76.0 70.6 57.4 75.0 73.5
Br-Prompt [49]+ASFormer 94.1 92.0 83.0 91.6 81.2 89.2 87.8 81.3 83.8 88.1 N/A N/A N/A N/A N/A
5. Experiments and results Table 3
Action segmentation performance with features following various window
. . configurations on the CPR dataset (#split 1).
5.1. Evaluation metrics g split 1)
Window configuration F1@{10,25,50} Edit Acc.
5.1.1. Frame-wise accuracy (ACC) Baseline 95.8 93.6 89.8 94.2 89.5
F . . 1 d luati tri ds = [2, 4] & ol = [2, 2] 95.3 94.8 91.5 93.3 92.0
raI.ne-w1se accurficy 1S commonly use as. a.n eval. uation metric ds = [2, 4, 8] & ol = [4, 2, 1] 96.5 95.5 92.0 94.8 91.0
for action segmentation [50,51,53], whereas it is easily affected by ds=1[4,8, 12] &ol = [2, 1, 1] 96.0 95.7 92.7 95.0 91.8

long-duration actions and not sensitive to over-segmentation issues.

5.1.2. Segmental edit score (Edit)

Segmental edit score [54] is used to assess the model performance
in predicting the ordering of action segmentation without being af-
fected by minor temporal shifts. Once proposed, the segmental edit
score has been widely used in many temporal action segmentation
tasks [23,28,29,39,53] since it combines the assessment of accuracy
and efficiency into a single metric. There is considerable uncertainty
about when one action will cease and another will begin. Typically,
in practical applications such as surgical workflow assessment, the
accurate temporal continuity of surgical operations tends to be more
crucial than precise temporal segmentation, as the same goes for CPR
instruction.

5.1.3. Segmental F1 score with overlapping threshold k (F1@k)
Segmental overlap F1 score [38] has three distinctive characteris-
tics: (1) penalizes over-segmentation errors; (2) ignores minor temporal
shifts between the predictions and ground-truth; (3) is determined
by the total number of actions but does not depend on the duration
of each action instance. By comparing the Intersection over Union
(IoU) score of the predictions and ground-truth, if the threshold = =
% is exceeded, it is determined as true positive, otherwise as true
negative, where k = 10,25,50 are adopted in temporal action seg-
mentation tasks. The precision and recall are defined as precision =

true positives true positives .
L p — e p —, respectively.
true positives+false positives true positives+false negatives

Then F1@k value can be computed from F1 = 2 x Liecisionsrecall
precision+recall

, recall =

5.2. Implementation details

We train the VFE module for 50 epochs using AdamW [55] opti-
mizer with a learning rate of 5e-6 and weight decay of 0.2. There is a
warm-up in the first 5 epochs. The batch size is 12. The downsampling
rate and overlapping rate of the VFE module are experimentally deter-
mined in Section 5.4, which are 4, 8, 12 and 2, 1, 1, respectively. We
adopt a spatial resolution of 224 x 224 as input and the feature dimen-
sion of output for each frame is 768. The vision and text Transformer
encoders are synchronously pre-trained on Kinetics-400 [30] derived
from [48]. Following the standard setups from previous methods [24,
42], we train the ASE and PRC module for 50 epochs using Adam
optimizer with a learning rate of 5e-4 and batch size of 1. We follow
the same hyperparameter settings as per [43,49]. For evaluation, we
perform 4-fold cross validation and report the average results. The VFE
module is trained in identical split configurations to avoid information
leakage. All experiments are implemented with PyTorch 1.12 on 4
NVIDIA GeForce RTX 3090 GPUs.

5.3. Module selection for action segmentation

It is non-trivial to select an appropriate and distinctive backbone
to approach our goal of CPR action segmentation. Table 2 reveals the
best temporal action segmentation models on GTEA, 50Salads, and
Breakfast datasets. Comparing the performance on public datasets is
intuitively convincing, for which we gaze at the optimal one, AS-
Former [43]. Particularly, we overlook Br-Prompt [49] in this subsec-
tion, which plays a role in feature representation, which enhances the
action segmentation models rather than serves as one of them.

Considering the property of the collected CPR dataset, we lay more
emphasis on the analysis capacity to confront more enormous and
complex data. Concretely, on the GTEA and 50Salads datasets with
slightly smaller video volumes, we find ASFormer exhibits inference
accuracies comparable to ASRF [46] and SSTDA [39]. While carried
out on the Breakfast dataset with a multitude of videos, the model
explicitly yields state-of-the-art performance. Through observing the
performance on three public datasets, ASFormer illustrates the appli-
cation of Transformer in the TAS task, affirming the non-negligible
capacity of temporal representation and persistent sensitivity of long-
term relationships. Due to the convenient scalability and robustness of
ASFormer, we adopt this model as a vanilla backbone for CPR action
segmentation.

5.4. Sampling strategy selection for feature extraction

In the process of extracting video frame-wise features, we adopt
a specific sampling strategy dependent on pertinent experiments to
generate video clips of a fixed length, which serve as the input of the
video features extractor. In general, each video clip adopts a 16-frame
window. We are mainly concerned with the downsampling rate (ds)
of frames in each window, and the overlapping rate (ol) between two
windows. It should be emphasized that both the downsampling rate
and the overlapping rate are heuristically selected according to the
characteristics of the dataset. Concretely, longer windows lead to sparse
information about each action, while shorter ones are even unable to
contain more than two actions. We empirically take both long and short
windows into consideration, which produce excellent feature extraction
performance by involving multi-scale information.

Diverse window configurations are displayed in Table 3, which
indicate the non-trivial importance of the downsampling rate and the
overlapping rate. The collective results are retained on the custom CPR
dataset (#split 1) under the support of the ASE module as the action
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Fig. 3. Visualization of PhiTrans and related variants for temporal action segmentation on the CPR dataset. Diverse colors represent action categories, and their length indicates

the duration of the corresponding action.

Table 4

Model performance compared with baselines and competitive models on the CPR dataset.
Model #params. FLOPs F1@{10,25,50} Edit Acc.
MS-TCN [24] 0.8M 1.6G 93.3 91.6 85.5 89.9 88.7
MS-TCN? 0.7M 1.4G 94.0 92.4 88.7 91.8 90.0
MS-TCN++ [42] 1.0M 2.0G 93.6 92.1 87.1 90.5 88.9
MS-TCN++* 0.9M 1.8G 93.8 92.7 88.6 91.2 90.3
UVAST+alignment decoder [40] 2.2M 3.6G 95.3 93.7 89.0 93.6 89.3
UVAST+alignment decoder® 1.7M 2.3G 96.0 94.4 90.6 93.9 90.2
PhiTrans (Ours) 1.5M 3.1G 95.8 95.3 91.7 94.6 91.1

2 Indicates that features used are extracted from the VFE module of PhiTrans.

segmentation backbone. Multiple downsampling rates and overlapping
rates are adopted simultaneously as mentioned above. In addition,
training efficiency is an essential factor to be carefully considered. Com-
plicated windows conduce to substantial training time, while simple
ones may fail to grab discriminative information. In the light of this, we
conduct three groups of window arrangements to seek out the optimal
one. Here we adopt the preceding Transformer-based method [43] as
the vanilla baseline.

When the downsampling rates are 2, 4, and correspondingly the
overlapping rates are 2, 2, redundant local features are captured. Each
window contains only few actions, where a good deal of frames belong
to the same action, resulting in poor effects. Similarly, employing 2, 4,
and 8 downsampling rates and 4, 2, and 1 overlapping rates though
reaches a high FI@50 as 96.5, its overlapping rate of 4 misleads
the module extensively reusing the same information, decreasing the
abundance of video features. We finally adopt downsampling rates as
4, 8, and 12 corresponding to the overlapping rates of 2, 1, and 1,
which balance the expressions derived from various receptive fields
with rational training efficiency.

5.5. Model performance of PhiTrans

5.5.1. Quantitative results

Our model accomplishes the objective to serve as a productive
toolbox assisting CPR instruction with action segmentation, with the
intact model performance manifested in Table 4. On the whole, our
model is adequate to approach the challenge of assisting CPR in-
struction, performing well on all metrics used surpassing 91.0%. The
comprehensive performance reveals the effectiveness and robustness of
PhiTrans. More importantly, PhiTrans reaches 94.6% on Edit, a metric
which reflects the model ordinal predicting performance wiping out
fine-drawn temporal shifts. That means our model is prone to under-
stand the chronological relationship of CPR actions that practically

necessitates. In addition, 95.8%, 95.3%, and 91.7% on F1@{10,25,50}
indicate that PhiTrans successfully penalizes over-segmentation errors
highlighted in the TAS task. Our model significantly outperforms two
typical baselines [24,42] and also defeats the competitive model [40]
on the CPR dataset. Furthermore, we equip these models with the
features extracted from our VFE module to demonstrate the salience
of both the feature extraction and the segmentation of our model.
Specifically, though all three models benefit from the features derived
from our VFE module, i.e., gain of all metrics, release of parameters
and computational complexity, they fall behind PhiTrans to varying
degrees. Though not designed to pursue a state-of-the-art performance
on the public dataset, PhiTrans outperforms cutting-edge models with-
out any fine-tuning, revealed in Table 6. It gains +0.8% improvement
on F1@50, with other metrics comparable to previous state-of-the-art,
which further manifests the effectiveness of PhiTrans on the general
TAS task.

5.5.2. Qualitative results

To improve the model interpretability for empirical observation and
analysis, we visually present the favorable performance of PhiTrans
and its modules. Primarily, Fig. 6 visualizes the confusion matrix of
PhiTrans on the CPR dataset, which witnesses dominant segmentation
performance on the majority of CPR actions by PhiTrans. Although
our model exhibits hesitation in distinguishing actions ranging from
6 (declaring someone is sick) to 10 (requesting professional assistance),
it is rational since these actions primarily differ in terms of vocal
expression by the subjects, which is not incorporated into our modality
for accommodating complex real-world scenarios. Besides, we show
the distributions of features generated by the VFE module in Fig. 4.
Distinct clusters imply good feature representation, and the potential
overlap denotes that some CPR actions are similar and interweaved.
To indicate that the ASE and PRC modules play essential roles, Fig. 5
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Fig. 4. Distributions of features generated by the VFE module visualized by t-SNE [56]. The video samples are randomly selected from each of the four-fold cross-validation splits
of the CPR dataset for feature presentation. Points denote the frame features in the video, and diverse colors represent action categories.
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Fig. 5. Cross-attention map visualization of PhiTrans on the CPR dataset. The horizontal and vertical axes indicate the index of the frames of the video and action categories,
respectively. The brighter color implies a higher attention score. The green and blue lines indicate positions of ground-truth and refined prediction boundaries, respectively. The
numbers above two lines measure their distances in frames. * presents the occurrence of over-segmentation.
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Fig. 6. Confusion matrix for the custom CPR dataset. The numbers on the horizontal
and vertical axes represent the ordinal CPR actions. The numerical unit in the confusion
matrix is expressed in percentages.

visualizes the cross-attention map of PhiTrans on the CPR dataset. We
observe that the ASE module can handle both the inter- and intra-
conditions with consistently high scores for single action and distinct
transitions between different action categories. The PRC module makes
the predictions closer to the ground-truth by calibrating the boundaries.
Although a few over-segmentation issues still exist as lines with the
signal « in the figure, most predicted boundaries are only a few frames
away from the ground-truth. These results qualitatively illustrate the
superiority of our model.

Table 5

Module ablation of PhiTrans on the CPR dataset.
Model with variants = Components F1@{10,25,50} Edit Acc.

ASE VFE PRC

All v v v 95.8 953 91.7 94.6 91.1
w/o ASE X v v 943 93.0 885 929 88.6
w/o VFE v X v 94.1 91.7 87.1 91.8 87.6
w/o PRC v v X 95.3 945 915 93.6 91.1
w/o VFE, w/o PRC v X X 95.3 94.2 89.5 93.4 89.7

5.6. Ablation study of PhiTrans

5.6.1. Module ablation

Table 5 quantitatively reveals the effect of each module on holistic
model performance. We detach each part independently to observe
any drop. We experiment our model without the ASE module, w/o
ASE, by replacing the ASE module with the approved backbone [24],
w/o VFE by adopting ResNet152 backbone-based frame-wise features
as input, and w/o PRC by merely applying loss functions proposed in
previous methods [43]. The results show that lacking any module will
lead to an apparent performance drop on all metrics, manifesting the
essentiality of each module. Worst of all, the loss of the VFE module
(w/o VFE) causes the model performance to reach a trough, leading
to a disastrous result of the total —9.9% on F1 and —2.8%, —3.5% on
Edit and Acc., respectively. Interestingly, the further removal of the PRC
module on this basis (namely, w/o VFE, w/o PRC) instead presents a
relative increase on all metrics. This situation can be explained by the
fact that the PRC module tends to suppress over-segmentation issues
excessively when the feature expression is insufficient. These results
prove the indispensability of the VFE module for its splendid feature
representation. Similarly, whichever module misses accounts for the
loss of corresponding capacity.

Besides, to intuitively present effects of these modules, Fig. 3 visu-
alizes the qualitative representation on the custom CPR dataset. Under
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Table 6

Model performance of PhiTrans on the 50Salads dataset.
50Salads F1@{10,25,50} Edit Acc.
Cutting-edge [49] 89.2 87.8 81.3 83.8 88.1
PhiTrans (ours) 89.3 87.8 82.1 83.4 88.1

Table 7

Loss ablation of PhiTrans on the CPR dataset (#split 1).
VFE loss components F1@{10,25,50} Edit Acc.
Lo 94.1 91.6 88.1 92.7 88.7
Loon + Lingeg 95.1 93.9 90.1 92.8 90.0
Lyom + Linteg + Lovar 96.2 95.5 91.4 95.5 90.5
PRC loss components F1@{10,25,50} Edit Acc
L 93.7 92.4 88.3 91.0 89.4
Lo +Ly 96.2 95.5 91.4 95.5 90.5
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Fig. 7. Examples of remaining segmentation problems for PhiTrans on the CPR dataset.
PhiTrans fails to completely eliminate fragments in the adjacent actions, suffers trivial
segments, and loses direction encountering similar actions. Note that diverse colors
represent action categories, and their length indicates the duration of the corresponding
action.

the reinforcement of each module, PhiTrans could not only perceive
the presence of delicate actions but alleviate over-segmentation issues
to a great extent, as displayed in the blue dashed line. Specifically,
multiple false fragments are significantly denied by employing the PRC
module, which can be qualitatively exemplified in the second and fifth
rows of Fig. 3. Three hands-on modules proportionally bring promising
performance for the challenge of assisting CPR instruction.

5.6.2. Loss ablation

Table 7 presents two types of loss components that arise in the
proposed model, one for extracting frame-wise features and the other
for refining segmentation. Specifically, all three VFE loss components
contribute to capturing representative features. The semantic loss £,
supervises distinctive features related to various CPR actions, laying the
foundation for feature extraction. As the integrated £,,,, and statistical
loss L, are successively added, the model achieves respective im-
provement, indicating the indispensability of all losses. Additionally, it
can be witnessed that both loss components utilized in the PRC module
advocate the model performance by action segmentation control and
boundary regression refinement. Notably, the boundary regression loss
L, brings + 3.0% on every F1 and Edit, exactly showing its effective-
ness to alleviate over-segmentation issues. Overall, these loss ablations
certify the necessity and trait of losses implemented in our model.

6. Discussion

Although PhiTrans is capable of efficiently modeling the character-
istics of each action when combining the latent information between

10
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actions at various scales, there still inevitably exist segmentation er-
rors from diverse aspects while facing demanding fragments. Specifi-
cally, as shown by the dashed line in Fig. 7(a), although the difficult-
to-recognize action segments are achieving better accuracy with the
consecutive reinforcement of the model, the over-segmentation errors
cannot be eliminated entirely, resulting in remaining lingering clips
from the adjacent action in the final segmentation result. Furthermore,
PhiTrans fails to avoid the redundant segments as shown in Fig. 7(b)
due to the short duration of some actions. Finally, considering the
introduction of boundary regression loss to alleviate over-segmentation
issues, certain contiguous actions have similar loss curve peaks, which
may mislead the model into classifying the current action as an adjacent
category. Fig. 7(c) demonstrates the over-correction state caused by
the above situation. To tackle these remaining problems, an additional
modality, voice, can be fused to guide the estimation of visually similar
CPR actions mentioned in Section 5.5.2. Besides, we will consider more
effective Transformer backbones like Swin Transformers [57,58] and
pursue an end-to-end paradigm in the future work.

7. Conclusion

In this study, we originally deliberate a rewarding pipeline that
assists the enhancement of CPR instruction via action segmentation
through novel deep learning architectures. Specifically, we collect a
custom CPR dataset involving videos of the whole process of cardiopul-
monary resuscitation assessment along with corresponding frame-level
semantic annotation. Accordingly, we devise a Prompt-enhanced hier-
archical Transformer, called PhiTrans, especially for CPR action seg-
mentation. PhiTrans consists of three integral modules: Video Features
Extractor, Action Segmentation Executor, and Prediction Refinement
Calibrator. Such an architecture adequately considers the characteris-
tics of CPR actions, facilitating the capacity to capture transient CPR
actions while maintaining impressive performance. Extensive ablation
experiments present that PhiTrans inspires improvement compared to
half-baked models on the CPR dataset.

In conclusion, it is non-trivial that PhiTrans is committed to CPR
action segmentation, which is conducive to freeing experts of detecting
and rectifying potential ordinal or oblivious mistakes made by subjects,
thereby manifesting a compelling pipeline on elevating CPR instruction
with action segmentation. The results of this research may serve as
the cornerstone and offer a route towards developing a prospective
orientation that would leverage fine-grained criteria like CPR action
assessment.
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